Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways
N. Rhind, P. Russell
Journal of Cell Science 2000 113: 3889-3896;
N. Rhind
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Russell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Recent work on the mechanisms of DNA damage and replication cell cycle checkpoints has revealed great similarity between the checkpoint pathways of organisms as diverse as yeasts, flies and humans. However, there are differences in the ways these organisms regulate their cell cycles. To connect the conserved checkpoint pathways with various cell cycle targets requires an adaptable link that can target different cell cycle components in different organisms. The Chk1 and Cds1 protein kinases, downstream effectors in the checkpoint pathways, seem to play just such roles. Perhaps more surprisingly, the two kinases not only have different targets in different organisms but also seem to respond to different signals in different organisms. So, whereas in fission yeast Chk1 is required for the DNA damage checkpoint and Cds1 is specifically involved in the replication checkpoint, their roles seem to be shuffled in metazoans.

  • © 2000 by Company of Biologists

REFERENCES

    1. Allen, J. B.,
    2. Zhou, Z.,
    3. Siede, W.,
    4. Friedberg, E. C. and
    5. Elledge, S. J.
    (1994). The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8, 2401–2415
    OpenUrlAbstract/FREE Full Text
    1. Baber-Furnari, B. A.,
    2. Rhind, N.,
    3. Boddy, M. N.,
    4. Shanahan, P.,
    5. Lopez-Girona, A. and
    6. Russell, P.
    (2000). Regulation of mitotic inhibitor mik1 helps to enforce the DNA damage checkpoint. Mol. Biol. Cell 11, 1–11
    OpenUrlAbstract/FREE Full Text
    1. Barbet, N. C. and
    2. Carr, A. M.
    (1993). Fission yeast wee1 protein kinase is not required for DNA damage-dependent mitotic arrest. Nature 364, 824–827
    OpenUrlCrossRefPubMedWeb of Science
    1. Baum, B.,
    2. Wuarin, J. and
    3. Nurse, P.
    (1997). Control of S-phase periodic transcription in the fission yeast mitotic cycle. EMBO J 16, 4676–4688
    OpenUrlCrossRefPubMedWeb of Science
    1. Bell, D. W.,
    2. Varley, J. M.,
    3. Szydlo, T. E.,
    4. Kang, D. H.,
    5. Wahrer, D. C.,
    6. Shannon, K. E.,
    7. Lubratovich, M.,
    8. Verselis, S. J.,
    9. Isselbacher, K. J.,
    10. Fraumeni, J. F. and
    11. et al.
    (1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531
    OpenUrlAbstract/FREE Full Text
    1. Bentley, N. J.,
    2. Holtzman, D. A.,
    3. Flaggs, G.,
    4. Keegan, K. S.,
    5. DeMaggio, A.,
    6. Ford, J. C.,
    7. Hoekstra, M. and
    8. Carr, A. M.
    (1996). The Schizosaccharomyces pombe Rad3 checkpoint gene. EMBO J 15, 6641–6651
    OpenUrlPubMedWeb of Science
    1. Blasina, A.,
    2. de Weyer, I. V.,
    3. Laus, M. C.,
    4. Luyten, W. H.,
    5. Parker, A. E. and
    6. McGowan, C. H.
    (1999). A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol 9, 1–10
    OpenUrlCrossRefPubMedWeb of Science
    1. Blasina, A.,
    2. Paegle, E. S. and
    3. McGowan, C. H.
    (1997). The role of inhibitory phosphorylation of Cdc2 following DNA replication block and radiation-induced damage in human cells. Mol. Biol. Cell 8, 1013–1023
    OpenUrlAbstract/FREE Full Text
    1. Boddy, M. N.,
    2. Furnari, B.,
    3. Mondesert, O. and
    4. Russell, P.
    (1998). Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280, 909–912
    OpenUrlAbstract/FREE Full Text
    1. Brondello, J. M.,
    2. Boddy, M. N.,
    3. Furnari, B. and
    4. Russell, P.
    (1999). Basis for the checkpoint signal specificity that regulates Chk1 and Cds1 protein kinases. Mol. Cell Biol 19, 4262–42629
    OpenUrlAbstract/FREE Full Text
    1. Brown, A. L.,
    2. Lee, C. H.,
    3. Schwarz, J. K.,
    4. Mitiku, N.,
    5. Piwnica-Worms, H. and
    6. Chung, J. H.
    (1999). A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 96, 3745–3750
    OpenUrlAbstract/FREE Full Text
    1. Brown, E. J. and
    2. Baltimore, D.
    (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14, 397–402
    OpenUrlAbstract/FREE Full Text
    1. Busby, E. C.,
    2. Leistritz, D. F.,
    3. Abraham, R. T.,
    4. Karnitz, L. M. and
    5. Sarkaria, J. N.
    (2000). The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res 60, 2108–21012
    OpenUrlAbstract/FREE Full Text
    1. Charles, J. F.,
    2. Jaspersen, S. L.,
    3. Tinker-Kulberg, R. L.,
    4. Hwang, L.,
    5. Szidon, A. and
    6. Morgan, D. O.
    (1998). The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr. Biol 8, 497–507
    OpenUrlCrossRefPubMedWeb of Science
    1. Chaturvedi, P.,
    2. Eng, W. K.,
    3. Zhu, Y.,
    4. Mattern, M. R.,
    5. Mishra, R.,
    6. Hurle, M. R.,
    7. Zhang, X.,
    8. Annan, R. S.,
    9. Lu, Q.,
    10. Faucette, L. F. and
    11. et al
    . (1999). Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18, 4047–4054
    OpenUrlCrossRefPubMedWeb of Science
    1. Chehab, N. H.,
    2. Malikzay, A.,
    3. Appel, M. and
    4. Halazonetis, T. D.
    (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14, 278–288
    OpenUrlAbstract/FREE Full Text
    1. Chen, P.,
    2. Luo, C.,
    3. Deng, Y.,
    4. Ryan, K.,
    5. Register, J.,
    6. Margosiak, S.,
    7. Tempczyk-Russell, A.,
    8. Nguyen, B.,
    9. Myers, P.,
    10. Lundgren, K. and
    11. et al
    . (2000). The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell 100, 681–692
    OpenUrlCrossRefPubMedWeb of Science
    1. Christensen, P. U.,
    2. Bentley, N. J.,
    3. Martinho, R. G.,
    4. Nielsen, O. and
    5. Carr, A. M.
    (2000). Mik1 levels accumulate in S phase and may mediate an intrinsic link between S phase and mitosis. Proc. Natl. Acad. Sci. USA 97, 2579–25684
    OpenUrlAbstract/FREE Full Text
    1. Clarke, D. J.,
    2. Segal, M.,
    3. Mondesert, G. and
    4. Reed, S. I.
    (1999). The Pds1 anaphase inhibitor and Mec1 kinase define distinct checkpoints coupling S phase with mitosis in budding yeast. Curr. Biol 9, 365–368
    OpenUrlCrossRefPubMedWeb of Science
    1. Cohen-Fix, O. and
    2. Koshland, D.
    (1997). The anaphase inhibitor of Saccharomyces cerevisiae Pds1 is a target of the DNA damage checkpoint pathway. Proc. Natl. Acad. Sci. USA 94, 14361–14366
    OpenUrlAbstract/FREE Full Text
    1. Coleman, T. R. and
    2. Dunphy, W. G.
    (1994). Cdc2 regulatory factors. Curr. Opin. Cell Biol 6, 877–882
    OpenUrlCrossRefPubMedWeb of Science
    1. Corellou, F.,
    2. Bisgrove, S. R.,
    3. Kropf, D. L.,
    4. Meijer, L.,
    5. Kloareg, B. and
    6. Bouget, F.
    (2000). A S/M DNA replication checkpoint prevents nuclear and cytoplasmic events of cell division including centrosomal axis alignment and inhibits activation of cyclin-dependent kinase-like proteins in fucoid zygotes. Development 127, 1651–1660
    OpenUrlAbstract
    1. Dasika, G. K.,
    2. Lin, S. C.,
    3. Zhao, S.,
    4. Sung, P.,
    5. Tomkinson, A. and
    6. Lee, E. Y.
    (1999). DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18, 7883–7899
    OpenUrlCrossRefPubMedWeb of Science
    1. Desany, B. A.,
    2. Alcasabas, A. A.,
    3. Bachant, J. B. and
    4. Elledge, S. J.
    (1998). Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev 12, 2956–2970
    OpenUrlAbstract/FREE Full Text
    1. Durocher, D.,
    2. Henckel, J.,
    3. Fersht, A. R. and
    4. Jackson, S. P.
    (1999). The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387–394
    OpenUrlCrossRefPubMedWeb of Science
    1. Elledge, S. J.
    (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672
    OpenUrlAbstract/FREE Full Text
    1. Fogarty, P.,
    2. Campbell, S. D.,
    3. Abu-Shumays, R.,
    4. Phalle, B. S.,
    5. Yu, K. R.,
    6. Uy, G. L.,
    7. Goldberg, M. L. and
    8. Sullivan, W.
    (1997). The Drosophila grapes gene is related to checkpoint gene Chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol 7, 418–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Furnari, B.,
    2. Blasina, A.,
    3. Boddy, M. N.,
    4. McGowan, C. H. and
    5. Russell, P.
    (1999). Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. Mol. Biol. Cell 10, 833–845
    OpenUrlAbstract/FREE Full Text
    1. Furnari, B.,
    2. Rhind, N. and
    3. Russell, P.
    (1997). Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Science 277, 1495–1497
    OpenUrlAbstract/FREE Full Text
    1. Garcia, V.,
    2. Salanoubat, M.,
    3. Choisne, N. and
    4. Tissier, A.
    (2000). An ATM homologue from arabidopsis thaliana: complete genomic organisation and expression analysis. Nucl. Acids Res 28, 1692–1699
    OpenUrlAbstract/FREE Full Text
    1. Gardner, R.,
    2. Putnam, C. W. and
    3. Weinert, T.
    (1999). RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. EMBO J 18, 3173–3185
    OpenUrlAbstract/FREE Full Text
    1. Graves, P. R.,
    2. Yu, L.,
    3. Schwarz, J. K.,
    4. Gales, J.,
    5. Sausville, E. A.,
    6. O'Connor, P. M. and
    7. Piwnica-Worms, H.
    (2000). The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J. Biol. Chem 275, 5600–5605
    OpenUrlAbstract/FREE Full Text
    1. Guo, Z. and
    2. Dunphy, W. G.
    (2000). Response of Xenopus cds1 in cell-free extracts to DNA templates with double-stranded ends. Mol. Biol. Cell 11, 1535–1546
    OpenUrlAbstract/FREE Full Text
    1. Hari, K. L.,
    2. Santerre, A.,
    3. Sekelsky, J. J.,
    4. McKim, K. S.,
    5. Boyd, J. B. and
    6. Hawley, R. S.
    (1995). The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82, 815–821
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartley, K. O.,
    2. Gell, D.,
    3. Smith, G. C.,
    4. Zhang, H.,
    5. Divecha, N.,
    6. Connelly, M. A.,
    7. Admon, A.,
    8. Lees-Miller, S. P.,
    9. Anderson, C. W. and
    10. Jackson, S. P.
    (1995). DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartwell, L. H. and
    2. Weinert, T. A.
    (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634
    OpenUrlAbstract/FREE Full Text
    1. Hirao, A.,
    2. Kong, Y. Y.,
    3. Matsuoka, S.,
    4. Wakeham, A.,
    5. Ruland, J.,
    6. Yoshida, H.,
    7. Liu, D.,
    8. Elledge, S. J. and
    9. Mak, T. W.
    (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827
    OpenUrlAbstract/FREE Full Text
    1. Hofmann, K. and
    2. Bucher, P.
    (1995). The FHA domain: a putative nuclear signaling domain found in protein kinases and transcription factors. Trends Biochem. Sci 20, 347–349
    OpenUrlCrossRefPubMedWeb of Science
    1. Huang, M.,
    2. Zhou, Z. and
    3. Elledge, S. J.
    (1998). The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94, 595–605
    OpenUrlCrossRefPubMedWeb of Science
    1. Jackson, J. R.,
    2. Gilmartin, A.,
    3. Imburgia, C.,
    4. Winkler, J. D.,
    5. Marshall, L. A. and
    6. Roshak, A.
    (2000). An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage. Cancer Res 60, 566–572
    OpenUrlAbstract/FREE Full Text
    1. Kastan, M. B.,
    2. Zhan, Q.,
    3. el-Deiry, W. S.,
    4. Carrier, F.,
    5. Jacks, T.,
    6. Walsh, W. V.,
    7. Plunkett, B. S.,
    8. Vogelstein, B. and
    9. Fornace, A. J. Jr..
    (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597
    OpenUrlCrossRefPubMedWeb of Science
    1. Kumagai, A.,
    2. Guo, Z.,
    3. Emami, K. H.,
    4. Wang, S. X. and
    5. Dunphy, W. G.
    (1998). The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J. Cell Biol 142, 1559–1569
    OpenUrlAbstract/FREE Full Text
    1. Lee, J. S.,
    2. Collins, K. M.,
    3. Brown, A. L.,
    4. Lee, C. H. and
    5. Chung, J. H.
    (2000). hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204
    OpenUrlCrossRefPubMedWeb of Science
    1. Lew, D. J. and
    2. Reed, S. I.
    (1995). A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol 129, 739–749
    OpenUrlAbstract/FREE Full Text
    1. Li, X. and
    2. Cai, M.
    (1997). Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae. Mol. Cell Biol 17, 2723–2734
    OpenUrlAbstract/FREE Full Text
    1. Lim, H. H.,
    2. Goh, P. Y. and
    3. Surana, U.
    (1996). Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28. Mol. Cell Biol 16, 6385–6397
    OpenUrlAbstract/FREE Full Text
    1. Lindsay, H. D.,
    2. Griffiths, D. J.,
    3. Edwards, R. J.,
    4. Christensen, P. U.,
    5. Murray, J. M.,
    6. Osman, F.,
    7. Walworth, N. and
    8. Carr, A. M.
    (1998). S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev 12, 382–395
    OpenUrlAbstract/FREE Full Text
    1. Liu, Q.,
    2. Guntuku, S.,
    3. Cui, X. S.,
    4. Matsuoka, S.,
    5. Cortez, D.,
    6. Tamai, K.,
    7. Luo, G.,
    8. Carattini-Rivera, S.,
    9. DeMayo, F.,
    10. Bradley, A. and
    11. et al
    . (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14, 1448–1459
    OpenUrlAbstract/FREE Full Text
    1. Liu, Y.,
    2. Vidanes, G.,
    3. Lin, Y. C.,
    4. Mori, S. and
    5. Siede, W.
    (2000). Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest. Mol. Gen. Genet 262, 1132–1146
    OpenUrlCrossRefPubMedWeb of Science
    1. Longhese, M. P.,
    2. Foiani, M.,
    3. Muzi-Falconi, M.,
    4. Lucchini, G. and
    5. Plevani, P.
    (1998). DNA damage checkpoint in budding yeast. EMBO J 17, 5525–5528
    OpenUrlAbstract
    1. Lopez-Girona, A.,
    2. Furnari, B.,
    3. Mondesert, O. and
    4. Russell, P.
    (1999). Nuclear localization of Cdc25 is regulated by DNA damage and a 14–3-3 protein. Nature 397, 172–175
    OpenUrlCrossRefPubMedWeb of Science
    1. Mailand, N.,
    2. Falck, J.,
    3. Lukas, C.,
    4. Syljuasen, R. G.,
    5. Welcker, M.,
    6. Bartek, J. and
    7. Lukas, J.
    (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 1425–1429
    OpenUrlAbstract/FREE Full Text
    1. Matsuoka, S.,
    2. Huang, M. and
    3. Elledge, S. J.
    (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897
    OpenUrlAbstract/FREE Full Text
    1. Minshull, J.,
    2. Straight, A.,
    3. Rudner, A. D.,
    4. Dernburg, A. F.,
    5. Belmont, A. and
    6. Murray, A. W.
    (1996). Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr. Biol 6, 1609–1620
    OpenUrlCrossRefPubMedWeb of Science
    1. Murakami, H. and
    2. Okayama, H.
    (1995). A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374, 817–819
    OpenUrlCrossRefPubMedWeb of Science
    1. Nishijima, H.,
    2. Nishitani, H.,
    3. Seki, T. and
    4. Nishimoto, T.
    (1997). A dual-specificity phosphatase Cdc25B is an unstable protein and triggers p34(Cdc2)/cyclin B activation in hamster BHK21 cells arrested with hydroxyurea. J. Cell Biol 138, 1105–1116
    OpenUrlAbstract/FREE Full Text
    1. O'Connell, M. J.,
    2. Raleigh, J. M.,
    3. Verkade, H. M. and
    4. Nurse, P.
    (1997). Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting Cdc2 by Y15 phosphorylation. EMBO J 16, 545–154
    OpenUrlAbstract
    1. Ogg, S.,
    2. Gabrielli, B. and
    3. Piwnica-Worms, H.
    (1994). Purification of a serine kinase that associates with and phosphorylates human Cdc25C on serine 216. J. Biol. Chem 269, 30461–30469
    OpenUrlAbstract/FREE Full Text
    1. Pati, D.,
    2. Keller, C.,
    3. Groudine, M. and
    4. Plon, S. E.
    (1997). Reconstitution of a MEC1-independent checkpoint in yeast by expression of a novel human fork head cDNA. Mol. Cell Biol 17, 3037–3046
    OpenUrlAbstract/FREE Full Text
    1. Pellicioli, A.,
    2. Lucca, C.,
    3. Liberi, G.,
    4. Marini, F.,
    5. Lopes, M.,
    6. Plevani, P.,
    7. Romano, A.,
    8. Di Fiore, P. P. and
    9. Foiani, M.
    (1999). Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J 18, 6561–6572
    OpenUrlAbstract/FREE Full Text
    1. Peng, C. Y.,
    2. Graves, P. R.,
    3. Ogg, S.,
    4. Thoma, R. S.,
    5. Byrnes, M. J. 3rd.,
    6. Wu, Z.,
    7. Stephenson, M. T. and
    8. Piwnica-Worms, H.
    (1998). C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14–3-3 protein binding. Cell Growth Differ 9, 197–208
    OpenUrlAbstract
    1. Peng, C. Y.,
    2. Graves, P. R.,
    3. Thoma, R. S.,
    4. Wu, Z.,
    5. Shaw, A. S. and
    6. Piwnica-Worms, H.
    (1997). Mitotic and G2 checkpoint control: regulation of 14–3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505
    OpenUrlAbstract/FREE Full Text
    1. Price, D.,
    2. Rabinovitch, S.,
    3. O'Farrell, P. H. and
    4. Campbell, S. D.
    (2000). Drosophila wee1 has an essential role in the nuclear divisions of early embryogenesis. Genetics 155, 159–166
    OpenUrlAbstract/FREE Full Text
    1. Raleigh, J. M. and
    2. O'Connell, M. J.
    (2000). The G2 DNA damage checkpoint targets both Wee1 and Cdc25. J. Cell Sci 113, 1727–1736
    OpenUrlAbstract/FREE Full Text
    1. Rhind, N.,
    2. Furnari, B. and
    3. Russell, P.
    (1997). Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev 11, 504–511
    OpenUrlAbstract/FREE Full Text
    1. Rhind, N. and
    2. Russell, P.
    (1998). Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol 10, 749–58
    OpenUrlCrossRefPubMedWeb of Science
    1. Rhind, N. and
    2. Russell, P.
    (1998). Tyrosine phosphorylation of Cdc2 is required for the replication checkpoint in Schizosaccharomyces pombe. Mol. Cell Biol 18, 3782–3787
    OpenUrlAbstract/FREE Full Text
    1. Sanchez, Y.,
    2. Bachant, J.,
    3. Wang, H.,
    4. Hu, F.,
    5. Liu, D.,
    6. Tetzlaff, M. and
    7. Elledge, S. J.
    (1999). Control of the DNA damage checkpoint by Chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166–1171
    OpenUrlAbstract/FREE Full Text
    1. Sanchez, Y.,
    2. Wong, C.,
    3. Thoma, R. S.,
    4. Richman, R.,
    5. Wu, Z.,
    6. Piwnica-Worms, H. and
    7. Elledge, S. J.
    (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501
    OpenUrlAbstract/FREE Full Text
    1. Santocanale, C. and
    2. Diffley, J. F.
    (1998). A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615–618
    OpenUrlCrossRefPubMedWeb of Science
    1. Savitsky, K.,
    2. Bar-Shira, A.,
    3. Gilad, S.,
    4. Rotman, G.,
    5. Ziv, Y.,
    6. Vanagaite, L.,
    7. Tagle, D. A.,
    8. Smith, S.,
    9. Uziel, T.,
    10. Sfez, S. and
    11. et al
    . (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753
    OpenUrlAbstract/FREE Full Text
    1. Shieh, S. Y.,
    2. Ahn, J.,
    3. Tamai, K.,
    4. Taya, Y. and
    5. Prives, C.
    (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14, 289–300
    OpenUrlAbstract/FREE Full Text
    1. Shirahige, K.,
    2. Hori, Y.,
    3. Shiraishi, K.,
    4. Yamashita, M.,
    5. Takahashi, K.,
    6. Obuse, C.,
    7. Tsurimoto, T. and
    8. Yoshikawa, H.
    (1998). Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618–621
    OpenUrlCrossRefPubMedWeb of Science
    1. Sibon, O. C.,
    2. Laurencon, A.,
    3. Hawley, R. and
    4. Theurkauf, W. E.
    (1999). The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr. Biol 9, 302–312
    OpenUrlCrossRefPubMedWeb of Science
    1. Sibon, O. C.,
    2. Stevenson, V. A. and
    3. Theurkauf, W. E.
    (1997). DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93–97
    OpenUrlCrossRefPubMedWeb of Science
    1. Sidorova, J. M. and
    2. Breeden, L. L.
    (1997). Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev 11, 3032–3045
    OpenUrlAbstract/FREE Full Text
    1. Siede, W.,
    2. Friedberg, A. S.,
    3. Dianova, I. and
    4. Friedberg, E. C.
    (1994). Characterization of G1 checkpoint control in the yeast Saccharomycescerevisiae following exposure to DNA-damaging agents. Genetics 138, 271–281
    OpenUrlAbstract/FREE Full Text
    1. Su, T. T.,
    2. Campbell, S. D. and
    3. O'Farrell, P. H.
    (1999). Drosophila grapes/Chk1 mutants are defective in cyclin proteolysis and coordination of mitotic events. Curr. Biol 9, 919–922
    OpenUrlCrossRefPubMed
    1. Sun, Z.,
    2. Hsiao, J.,
    3. Fay, D. S. and
    4. Stern, D. F.
    (1998). Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272–274
    OpenUrlAbstract/FREE Full Text
    1. Takai, H.,
    2. Tominaga, K.,
    3. Motoyama, N.,
    4. Minamishima, Y. A.,
    5. Nagahama, H.,
    6. Tsukiyama, T.,
    7. Ikeda, K.,
    8. Nakayama, K.,
    9. Nakanishi, M. and
    10. Nakayama, K.
    (2000). Aberrant cell cycle checkpoint function and early embryonic death in Chk1(/) mice. Genes Dev 14, 1439–1447
    OpenUrlAbstract/FREE Full Text
    1. Toczyski, D. P.,
    2. Galgoczy, D. J. and
    3. Hartwell, L. H.
    (1997). CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90, 1097–1106
    OpenUrlCrossRefPubMedWeb of Science
    1. Tominaga, K.,
    2. Morisaki, H.,
    3. Kaneko, Y.,
    4. Fujimoto, A.,
    5. Tanaka, T.,
    6. Ohtsubo, M.,
    7. Hirai, M.,
    8. Okayama, H.,
    9. Ikeda, K. and
    10. Nakanishi, M.
    (1999). Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53. J. Biol. Chem 274, 31463–31467
    OpenUrlAbstract/FREE Full Text
    1. Wahl, G. M.,
    2. Linke, S. P.,
    3. Paulson, T. G. and
    4. Huang, L. C.
    (1997). Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv 29, 183–219
    OpenUrlPubMedWeb of Science
    1. Walworth, N.,
    2. Davey, S. and
    3. Beach, D.
    (1993). Fission yeast Chk1 protein kinase links the rad checkpoint pathway to Cdc2. Nature 363, 368–371
    OpenUrlCrossRefPubMedWeb of Science
    1. Walworth, N. C. and
    2. Bernards, R.
    (1996). rad -dependent response of the Chk1 -encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356
    OpenUrlAbstract
    1. Weinert, T.
    (1997). A DNA damage checkpoint meets the cell cycle engine. Science 277, 1450–1451
    OpenUrlAbstract/FREE Full Text
    1. Weinert, T. A.,
    2. Kiser, G. L. and
    3. Hartwell, L. H.
    (1994). Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8, 652–665
    OpenUrlAbstract/FREE Full Text
    1. Westphal, C. H.
    (1997). Cell-cycle signaling: Atm displays its many talents. Curr. Biol 7, 789–792
    OpenUrl
    1. Wright, J. A.,
    2. Keegan, K. S.,
    3. Herendeen, D. R.,
    4. Bentley, N. J.,
    5. Carr, A. M.,
    6. Hoekstra, M. F. and
    7. Concannon, P.
    (1998). Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc. Natl. Acad. Sci. USA 95, 7445–7450
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto, A.,
    2. Guacci, V. and
    3. Koshland, D.
    (1996). Pds1, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol 133, 99–110
    OpenUrlAbstract/FREE Full Text
    1. Zakian, V. A.
    (1995). ATM -Related Genes: What Do They Tell Us about Functions of the Human Gene?. Cell 82, 685–687
    OpenUrlCrossRefPubMedWeb of Science
    1. Zeng, Y.,
    2. Forbes, K. C.,
    3. Wu, Z.,
    4. Moreno, S.,
    5. Piwnica-Worms, H. and
    6. Enoch, T.
    (1998). Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395, 507–510
    OpenUrlCrossRefPubMedWeb of Science
    1. Zeng, Y. and
    2. Piwnica-Worms, H.
    (1999). DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14–3-3 binding. Mol. Cell Biol 19, 7410–7419
    OpenUrlAbstract/FREE Full Text
    1. Zhou, Z. and
    2. Elledge, S. J.
    (1993). DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75, 1119–1127
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways
N. Rhind, P. Russell
Journal of Cell Science 2000 113: 3889-3896;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways
N. Rhind, P. Russell
Journal of Cell Science 2000 113: 3889-3896;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Transcriptional activation by the human Hsp70-associating protein Hap50
  • Can't clone, won't clone
  • Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.)
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992