Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
The FHA domain mediates phosphoprotein interactions
J. Li, G.I. Lee, S.R. Van Doren, J.C. Walker
Journal of Cell Science 2000 113: 4143-4149;
J. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.I. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.R. Van Doren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Walker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The forkhead-associated (FHA) domain is a phosphopeptide-binding domain first identified in a group of forkhead transcription factors but is present in a wide variety of proteins from both prokaryotes and eukaryotes. In yeast and human, many proteins containing an FHA domain are found in the nucleus and involved in DNA repair, cell cycle arrest, or pre-mRNA processing. In plants, the FHA domain is part of a protein that is localized to the plasma membrane and participates in the regulation of receptor-like protein kinase signaling pathways. Recent studies show that a functional FHA domain consists of 120–140 amino acid residues, which is significantly larger than the sequence motif first described. Although FHA domains do not exhibit extensive sequence similarity, they share similar secondary and tertiary structures, featuring a sandwich of two anti-parallel (beta)-sheets. One intriguing finding is that FHA domains may bind phosphothreonine, phosphoserine and sometimes phosphotyrosine, distinguishing them from other well-studied phosphoprotein-binding domains. The diversity of proteins containing FHA domains and potential differences in binding specificities suggest the FHA domain is involved in coordinating diverse cellular processes.

  • © 2000 by Company of Biologists

REFERENCES

    1. Andrews, R. K.,
    2. Harris, S. J.,
    3. McNally, T. and
    4. Berndt, M. C.
    ( 1998). Binding of purified 14–3-3 zeta signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex. Biochemistry 37, 638– 647
    OpenUrlCrossRefPubMed
    1. Bell, D. W.,
    2. Varley, J. M.,
    3. Szydlo, T. E.,
    4. Kang, D. H.,
    5. Wahrer, D. C. R.,
    6. Shannon K. E. Lubratovich, M.,
    7. Verselis, S. J.,
    8. Isselbacher, K. J.,
    9. Fraumeni, J. F.,
    10. Birch, J. M. and
    11. et al.
    ( 1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528– 2531
    OpenUrlAbstract/FREE Full Text
    1. Boleti, H.,
    2. Karsenti, E. and
    3. Vernos, I.
    ( 1996). Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49– 59
    OpenUrlCrossRefPubMedWeb of Science
    1. Bork, P.,
    2. Hofmann, K.,
    3. Bucher, P.,
    4. Neuwald, A. F.,
    5. Altschul, S. F. and
    6. Koonin, E. V.
    ( 1997). A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11, 68– 76
    OpenUrlAbstract
    1. Boudrez, A.,
    2. Beullens, M.,
    3. Groenen, P.,
    4. Van Eynde, A.,
    5. Vulsteke, V.,
    6. Jagiello, I.,
    7. Murray, M.,
    8. Krainer, A. R.,
    9. Stalmans, W. and
    10. Bollen, M.
    ( 2000). NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J. Biol. Chem 275, 25411– 25417
    OpenUrlAbstract/FREE Full Text
    1. Brand, U.,
    2. Fletcher, J. C.,
    3. Hobe, M.,
    4. Meyerowitz, E. M. and
    5. Simon, R.
    ( 2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617– 619
    OpenUrlAbstract/FREE Full Text
    1. Braun, D. M.,
    2. Stone, J. M. and
    3. Walker, J. C.
    ( 1997). Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: implications for transmembrane signaling in plants. Plant J 12, 83– 95
    OpenUrlCrossRefPubMedWeb of Science
    1. Cantley, L. C.,
    2. Auger, K. R.,
    3. Carpenter, C.,
    4. Duckworth, B.,
    5. Graziani, A.,
    6. Kapeller, R. and
    7. Soltoff, S.
    ( 1991). Oncogenes and signal transduction. Cell 64, 281– 302
    OpenUrlCrossRefPubMedWeb of Science
    1. Chrivia, J. C.,
    2. Kwok, R. P. S.,
    3. Lamb, N.,
    4. Hagiwara, M.,
    5. Montminy, M. R. and
    6. Goodman, R. H.
    ( 1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855– 859
    OpenUrlCrossRefPubMedWeb of Science
    1. Chung, C. Y.,
    2. Reddy, T. B.,
    3. Zhou, K. and
    4. Firtel, R. A.
    ( 1998). A novel, putative MEK kinase controls developmental timing and spatial patterning in Dictyostelium and is regulated by ubiquitin-mediated protein degradation. Genes Dev 12, 3564– 3578
    OpenUrlAbstract/FREE Full Text
    1. Claverie-Martin, F.,
    2. Wang, M. and
    3. Cohen, S. N.
    ( 1997). ARD-1 cDNA from human cells encodes a site-specific single-strand endoribonuclease that functionally resembles Escherichia coli RNase E. J. Biol. Chem 272, 13823– 13828
    OpenUrlAbstract/FREE Full Text
    1. Cohen, G. B.,
    2. Ren, R. and
    3. Baltimore, D.
    ( 1995). Modular binding domains in signal transduction proteins. Cell 80, 237– 248
    OpenUrlCrossRefPubMedWeb of Science
    1. Durocher, D.,
    2. Henckel, J.,
    3. Fersht, A. R. and
    4. Jackson, S. P.
    ( 1999). The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387– 394
    OpenUrlCrossRefPubMedWeb of Science
    1. Fay, D. S.,
    2. Sun, Z. and
    3. Stern, D. F.
    ( 1997). Mutations in SPK1/RAD53 that specifically abolish checkpoint but not growth-related functions. Curr. Genet 31, 97– 105
    OpenUrlCrossRefPubMedWeb of Science
    1. Fletcher, J. C.,
    2. Brand, U.,
    3. Running, M. P.,
    4. Simon, R. and
    5. Meyerowitz, E. M.
    ( 1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911– 1914
    OpenUrlAbstract/FREE Full Text
    1. Gerdes, J.,
    2. Lemke, H.,
    3. Baisch, H.,
    4. Wacker, H.-H.,
    5. Schwab, U. and
    6. Stein, H.
    ( 1984). Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol 133, 1710– 1715
    OpenUrlAbstract/FREE Full Text
    1. Hammet, A.,
    2. Pike, B. L.,
    3. Mitchelhill, K. I.,
    4. Teh, T.,
    5. Kobe, B.,
    6. House, C. M.,
    7. Kemp, B. E. and
    8. Heierhorst, J.
    ( 2000). FHA domain boundaries of the Dun1p and RAD53p cell cycle checkpoint kinases. FEBS Lett 471, 141– 146
    OpenUrlCrossRefPubMedWeb of Science
    1. Hofmann, K. and
    2. Bucher, P.
    ( 1995). The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem. Sci 20, 347– 349
    OpenUrlCrossRefPubMedWeb of Science
    1. Jeong, S.,
    2. Trotochaud, A. E. and
    3. Clark, S. E.
    ( 1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925– 1934
    OpenUrlAbstract/FREE Full Text
    1. Jinn, T.-L.,
    2. Stone, J. M. and
    3. Walker, J. C.
    ( 2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14, 108– 117
    OpenUrlAbstract/FREE Full Text
    1. Kavanaugh, W. M.,
    2. Turck, C. W. and
    3. Williams, L. T.
    ( 1995). PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268, 1177– 1179
    OpenUrlAbstract/FREE Full Text
    1. Koch, C. A.,
    2. Anderson, D.,
    3. Moran, M. F.,
    4. Ellis, C. and
    5. Pawson, T.
    ( 1991). SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252, 668– 674
    OpenUrlAbstract/FREE Full Text
    1. Koradi, R.,
    2. Billeter, M. and
    3. Wuthrich, K.
    ( 1996). MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51– 55
    OpenUrlCrossRefPubMedWeb of Science
    1. Kwok, R. P.,
    2. Lundblad, J. R.,
    3. Chrivia, J. C.,
    4. Richards, J. P.,
    5. Bächinger, H. P.,
    6. Brennan, R. G.,
    7. Roberts, S. G. E.,
    8. Green, M. R. and
    9. Goodman, R. H.
    ( 1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223– 226
    OpenUrlCrossRefPubMedWeb of Science
    1. Li, J. and
    2. Chory, J.
    ( 1997). A putative leucine-rich repeator kinase involved in brassinosteroid signal transduction. Cell 90, 929– 938
    OpenUrlCrossRefPubMedWeb of Science
    1. Li, J.,
    2. Smith, G. P. and
    3. Walker, J. C.
    ( 1999). Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. Proc. Nat. Acad. Sci. USA 96, 7821– 7826
    OpenUrlAbstract/FREE Full Text
    1. Liao, H.,
    2. Byeon, I. J. and
    3. Tsai, M. D.
    ( 1999). Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J. Mol. Biol 294, 1041– 1049
    OpenUrlCrossRefPubMedWeb of Science
    1. Lu, P. J.,
    2. Zhou, X. Z.,
    3. Shen, M. and
    4. Lu, K. P.
    ( 1999). Function of WW domains as phosphoserine-or phosphothreonine-binding modules. Science 283, 1325– 1328
    OpenUrlAbstract/FREE Full Text
    1. Marengere, L. E. M.,
    2. Songyang, Z.,
    3. Gish, G. D.,
    4. Schaller, M. D.,
    5. Parsons, J. T.,
    6. Stern, M. J.,
    7. Cantley, L. C. and
    8. Pawson, T.
    ( 1994). SH2 domain specificity and activity modified by a single residue. Nature 369, 502– 505
    OpenUrlCrossRefPubMed
    1. Matsuoka, S.,
    2. Huang, M. and
    3. Elledge, S. J.
    ( 1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893– 1897
    OpenUrlAbstract/FREE Full Text
    1. Murakami, H. and
    2. Okayama, H.
    ( 1995). A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374, 817– 819
    OpenUrlCrossRefPubMed
    1. Muslin, A. J.,
    2. Tanner, J. W.,
    3. Allen, P. M. and
    4. Shaw, A. S.
    ( 1996). Interaction of 14–3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889– 897
    OpenUrlCrossRefPubMedWeb of Science
    1. Oishi, I.,
    2. Sugiyama, S.,
    3. Otani, H.,
    4. Yamamura, H.,
    5. Nishida, Y. and
    6. Minami, Y.
    ( 1998). A novel Drosophila nuclear protein serine/threonine kinase expressed in the germline during its establishment. Mech Dev 71, 49– 63
    OpenUrlCrossRefPubMedWeb of Science
    1. Parker, D.,
    2. Ferreri, K.,
    3. Nakajima, T.,
    4. Lamorte, V. J.,
    5. Evans, R.,
    6. Koerber, S. C.,
    7. Hoeger, C. and
    8. Montminy, M. R.
    ( 1996). Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol 16, 694– 703
    OpenUrlAbstract/FREE Full Text
    1. Radhakrishnan, I.,
    2. Perez-Alvarado, G. C.,
    3. Parker, D.,
    4. Dyson, H. J.,
    5. Montminy, M. R. and
    6. Wright, P. E.
    ( 1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741– 752
    OpenUrlCrossRefPubMedWeb of Science
    1. Saka, Y.,
    2. Esashi, F.,
    3. Matsusaka, T.,
    4. Mochida, S. and
    5. Yanagida, M.
    ( 1997). Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev 11, 3387– 400
    OpenUrlAbstract/FREE Full Text
    1. Sanchez, Y.,
    2. Desany, B. A.,
    3. Jones, W. J.,
    4. Liu, Q.,
    5. Wang, B. and
    6. Elledge, S. J.
    ( 1996). Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357– 360
    OpenUrlAbstract
    1. Schultz, J.,
    2. Copley, R. R.,
    3. Doerks, T.,
    4. Ponting, C. P. and
    5. Bork, P.
    ( 2000). SMART: a web-based tool for the study of genetically mobile domains. Nucl. Acids Res 28, 231– 234
    OpenUrlAbstract/FREE Full Text
    1. Song, W.,
    2. Wang, G.,
    3. Chen, L.,
    4. Kim, H.,
    5. Pi, L.,
    6. Holsten, T.,
    7. gardner, J.,
    8. Wang, B.,
    9. Zhai, W.,
    10. Zhu, L. and
    11. et al
    . ( 1995). A receptor kinase-like protein encoded by the rice resistance gene, Xa21. Science 270, 1804– 1806
    OpenUrlAbstract/FREE Full Text
    1. Songyang, Z.,
    2. Shoelson, S. E.,
    3. Chaudhuri, M.,
    4. Gish, G.,
    5. Pawson, T.,
    6. Haser, W. G.,
    7. King, F.,
    8. Roberts, T.,
    9. Ratnofsky, S.,
    10. Lechleider, R. J.,
    11. Neel, B. G. and
    12. et al
    . ( 1993). SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767– 778
    OpenUrlCrossRefPubMedWeb of Science
    1. Stone, J. M.,
    2. Collinge, M. A.,
    3. Smith, R. D.,
    4. Horn, M. A. and
    5. Walker, J. C.
    ( 1994). Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science 266, 793– 796
    OpenUrlAbstract/FREE Full Text
    1. Stone, J. M.,
    2. Trotochaud, A. E.,
    3. Walker, J. C. and
    4. Clark, S. E.
    ( 1998). Control of meristem development by CLAVATA1 receptor kinase and KAPP protein phosphatase interaction. Plant Physiol 117, 1217– 1225
    OpenUrlAbstract/FREE Full Text
    1. Sueishi, M.,
    2. Takagi, M. and
    3. Yoneda, Y.
    ( 2000). The forkhead-associated domain of Ki-67 antigen interacts with the novel kinesin-like protein Hklp2. J. Biol. Chem 275, 28888– 28892
    OpenUrlAbstract/FREE Full Text
    1. Sun, Z.,
    2. Fay, D. S.,
    3. Marini, F.,
    4. Foiani, M. and
    5. Stern, D. F.
    ( 1996). Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev 10, 395– 406
    OpenUrlAbstract/FREE Full Text
    1. Sun, Z.,
    2. Hsiao, J.,
    3. Fay, D. S. and
    4. Stern, D. F.
    ( 1998). RAD53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272– 274
    OpenUrlAbstract/FREE Full Text
    1. Torii, K. U.,
    2. Mitsukawa, N.,
    3. Oosum, T.,
    4. Matsuura, Y.,
    5. Yokoyama, R.,
    6. Whittier, R. F. and
    7. Komeda, Y.
    ( 1996). The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8, 735– 746
    OpenUrlAbstract/FREE Full Text
    1. Trinkle-Mulcahy, L.,
    2. Ajuh, P.,
    3. Prescott, A.,
    4. Claverie-Martin, F.,
    5. Cohen, S.,
    6. Lamond, A. I. and
    7. Cohen, P.
    ( 1999). Nuclear organisation of NIPP1, a regulatory subunit of protein phosphatase 1 that associates with pre-mRNA splicing factors. J. Cell Sci 112, 157– 168
    OpenUrlAbstract/FREE Full Text
    1. Trotochaud, A. E.,
    2. Hao, T.,
    3. Wu, G.,
    4. Yang, Z. and
    5. Clark, S. E.
    ( 1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11, 393– 406
    OpenUrlAbstract/FREE Full Text
    1. Trotochaud, A. E.,
    2. Jeong, S. and
    3. Clark, S. E.
    ( 2000). CLAVATA3, a mutimeric ligand for the CLAVATA1 receptor-kinase. Science 289, 613– 616
    OpenUrlAbstract/FREE Full Text
    1. van der Knaap, E.,
    2. Song, W. Y.,
    3. Ruan, D. L.,
    4. Sauter, M.,
    5. Ronald, P. C. and
    6. Kende, H.
    ( 1999). Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase. Plant Physiol 120, 559– 570
    OpenUrlAbstract/FREE Full Text
    1. Vulsteke, V.,
    2. Beullens, M.,
    3. Waelkens, E.,
    4. Stalmans, W. and
    5. Bollen, M.
    ( 1997). Properties and phosphorylation sites of baculovirus-expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1). J. Biol. Chem 272, 32972– 32978
    OpenUrlAbstract/FREE Full Text
    1. Waksman, G.,
    2. Kominos, D.,
    3. Robertson, S. C.,
    4. Pant, N.,
    5. Baltimore, D.,
    6. Birge, R. B.,
    7. Cowburn, D.,
    8. Hanafusa, H.,
    9. Mayer, B. J.,
    10. Overduin, M.,
    11. Resh, M. D. and
    12. et al
    . ( 1992). Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358, 646– 653
    OpenUrlCrossRefPubMed
    1. Walworth, N. C.
    ( 1998). Rad9 comes of age. Science 281, 185– 186
    OpenUrlAbstract/FREE Full Text
    1. Wang, P.,
    2. Byeon, I.-J. L.,
    3. Liao, H.,
    4. Beebe, K.,
    5. Pei, D. and
    6. Tsai, M.-D.
    ) ( 2000). Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosine-peptides. J. Mol. Biol 302, 927– 940
    OpenUrlCrossRefPubMedWeb of Science
    1. Williams, R. W.,
    2. Wilson, J. M. and
    3. Meyerowitz, E. M.
    ( 1997). A possible role for kinase associated protein phosphatase in the CLAVATA1 signaling pathway. Proc. Nat. Acad. Sci. USA 94, 10467– 10472
    OpenUrlAbstract/FREE Full Text
    1. Wilson, J.,
    2. Wilson, S.,
    3. Warr, N. and
    4. Watts, F. Z.
    ( 1997). Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucl. Acids Res 25, 2138– 2146
    OpenUrlAbstract/FREE Full Text
    1. Yaffe, M. B.,
    2. Rittinger, K.,
    3. Volinia, S.,
    4. Caron, P. R.,
    5. Aitken, A.,
    6. Leffers, H.,
    7. Gamblin, S. J. and
    8. Cantley, L. C.
    ( 1997). The structural basis for 14–3-3:phosphopeptide binding specificity. Cell 91, 961– 971
    OpenUrlCrossRefPubMedWeb of Science
    1. Yaffe, M. B. and
    2. Cantley, L. C.
    ( 1999). Grabbing phosphoproteins. Nature 402, 30– 31
    OpenUrlCrossRefPubMed
    1. Zhou, Z. and
    2. Elledge, S. J.
    ( 1993). DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75, 1119– 1127
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The FHA domain mediates phosphoprotein interactions
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
The FHA domain mediates phosphoprotein interactions
J. Li, G.I. Lee, S.R. Van Doren, J.C. Walker
Journal of Cell Science 2000 113: 4143-4149;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
The FHA domain mediates phosphoprotein interactions
J. Li, G.I. Lee, S.R. Van Doren, J.C. Walker
Journal of Cell Science 2000 113: 4143-4149;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement
  • Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain
  • Transcriptional activation by the human Hsp70-associating protein Hap50
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992