Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Polarization of cell growth in yeast
D. Pruyne, A. Bretscher
Journal of Cell Science 2000 113: 571-585;
D. Pruyne
Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: apb5@cornell.edu
A. Bretscher
Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: apb5@cornell.edu
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The actin cytoskeleton provides the structural basis for cell polarity in Saccharomyces cerevisiae as well as most other eukaryotes. In Part I of this two-part commentary, presented in the previous issue of Journal of Cell Science, we discussed the basis by which yeast establishes and maintains different states of polarity through Ρ GTPases and cyclin-dependent protein kinase signaling. Here we discuss how, in response to those signals, the actin cytoskeleton guides growth of the yeast cell. A polarized array of actin cables at the cell cortex is the primary structural determinant of polarity. Motors such as class V myosins use this array to transport secretory vesicles, mRNA and organelles towards growth sites, where they are anchored by a cap of cytoskeletal and regulatory proteins. Cortical actin patches enhance and maintain this polarity, probably through endocytic recycling, which allows reuse of materials and prevents continued growth at old sites. The dynamic arrangement of targeting and recycling provides flexibility for the precise control of morphogenesis.

  • © 2000 by Company of Biologists

REFERENCES

    1. Adams, A.,
    2. Botstein, D. and
    3. Drubin, D.
    (1991). Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature 354, 404–408
    OpenUrlCrossRefPubMedWeb of Science
    1. Adams, A.,
    2. Shen, W.,
    3. Lin, C.,
    4. Leavitt, J. and
    5. Matsudaira, P.
    (1995). Isoform-specific complementation of the yeast sac6 null mutation by human fimbrin. Mol. Cell. Biol 15, 69–75
    OpenUrlAbstract/FREE Full Text
    1. Amatruda, J.,
    2. Cannon, J.,
    3. Tatchell, K.,
    4. Hug, C. and
    5. Cooper, J.
    (1990). Disruption of the actin cytoskeleton in yeast capping protein mutants. Nature 344, 352–354
    OpenUrlCrossRefPubMed
    1. Amatruda, J. and
    2. Cooper, J.
    (1992). Purification, characterization, and immunofluorescence localization of Saccharomyces cerevisiae capping protein. J. Cell Biol 117, 1067–1076
    OpenUrlAbstract/FREE Full Text
    1. Amatruda, J.,
    2. Gattermeir, D.,
    3. Karpova, T. and
    4. Cooper, J.
    (1992). Effects of null mutations and overexpression of capping protein on morphogenesis, actin distribution and polarized secretion in yeast. J. Cell Biol 119, 1151–1162
    OpenUrlAbstract/FREE Full Text
    1. Amberg, D.,
    2. Basart, E. and
    3. Botstein, D.
    (1995). Defining protein interactions with yeast actin in vivo. Nature Struct. Biol 2, 28–35
    OpenUrlCrossRefPubMedWeb of Science
    1. Amberg, D.,
    2. Zahner, J.,
    3. Mulholland, J.,
    4. Pringle, J. and
    5. Botstein, D.
    (1997). Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol. Biol. Cell 8, 729–753
    OpenUrlAbstract/FREE Full Text
    1. Amberg, D.
    (1998). Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle. Mol. Biol. Cell 9, 3259–3262
    OpenUrlFREE Full Text
    1. Anderson, B.,
    2. Boldogh, I.,
    3. Evangelista, M.,
    4. Boone, C.,
    5. Greene, L. and
    6. Pon, L.
    (1998). The src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J. Cell Biol 141, 1357–1370
    OpenUrlAbstract/FREE Full Text
    1. Arkowitz, R. and
    2. Lowe, N.
    (1997). A small conserved domain in the yeast Spa2p is necessary and sufficient for its polarized localization. J. Cell Biol 138, 17–36
    OpenUrlAbstract/FREE Full Text
    1. Ayscough, K.,
    2. Stryker, J.,
    3. Pokala, N.,
    4. Sanders, M.,
    5. Crews, P. and
    6. Drubin, D.
    (1997). High rates of actin turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol 137, 399–416
    OpenUrlAbstract/FREE Full Text
    1. Ayscough, K.,
    2. Eby, J.,
    3. Lila, T.,
    4. Dewar, H.,
    5. Kozminski, K. and
    6. Drubin, D.
    (1999). Sla1p is a functionally modular component of the yeast cortical actin cytoskeleton required for correct localization of both Rho1p-GTPase and Sla2p, a protein with talin homology. Mol. Biol. Cell 10, 1061–1075
    OpenUrlAbstract/FREE Full Text
    1. Balguerie, A.,
    2. Sivadon, P.,
    3. Bonneu, M. and
    4. Aigle, M.
    (1999). Rvs167p, the budding yeast homolog of amphiphysin, colocalizes with actin patches. J. Cell Sci 112, 2529–2537
    OpenUrlAbstract/FREE Full Text
    1. Barral, Y.,
    2. Parra, M.,
    3. Bidlingmaier, S. and
    4. Snyder, M.
    (1999). Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev 13, 176–187
    OpenUrlAbstract/FREE Full Text
    1. Bauer, F.,
    2. Urdaci, M.,
    3. Aigle, M. and
    4. Crouzet, M.
    (1993). Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns. Mol. Cell. Biol 13, 5070–5084
    OpenUrlAbstract/FREE Full Text
    1. Beach, D.,
    2. Salmon, E. and
    3. Bloom, K.
    (1999). Localization and anchoring of mRNA in budding yeast. Curr. Biol 9, 569–578
    OpenUrlCrossRefPubMedWeb of Science
    1. Belmont, L. and
    2. Drubin, D.
    (1998). The yeast V159N actin mutant reveals roles for actin dynamics in vivo. J. Cell Biol 142, 1289–1299
    OpenUrlAbstract/FREE Full Text
    1. Bender, A. and
    2. Pringle, J.
    (1991). Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol 11, 1295–1305
    OpenUrlAbstract/FREE Full Text
    1. Benedetti, H.,
    2. Raths, S.,
    3. Crausaz, F. and
    4. Riezman, H.
    (1994). The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organization in yeast. Mol. Biol. Cell 5, 1023–1037
    OpenUrlAbstract/FREE Full Text
    1. Benton, B.,
    2. Tinklenberg, A.,
    3. Jean, D.,
    4. Plump, S. and
    5. Cross, F.
    (1993). Genetic analysis of Cln/Cdc28 regulation of cell morphogenesis in budding yeast. EMBO J 12, 5267–5275
    OpenUrlPubMedWeb of Science
    1. Bi, E.,
    2. Maddox, P.,
    3. Lew, D.,
    4. Salmon, E.,
    5. McMillan, J.,
    6. Yeh, E. and
    7. Pringle, J.
    (1998). Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J. Cell Biol 142, 1301–1312
    OpenUrlAbstract/FREE Full Text
    1. Bobola, N.,
    2. Jansen, R. P.,
    3. Shin, T. and
    4. Nasmyth, K.
    (1996). Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84, 699–709
    OpenUrlCrossRefPubMedWeb of Science
    1. Boldogh, I.,
    2. Vojtov, N.,
    3. Karmon, S. and
    4. Pon, L.
    (1998). Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmm1p and Mdm10p. J. Cell Biol 141, 1371–1381
    OpenUrlAbstract/FREE Full Text
    1. Brennwald, P. and
    2. Novick, P.
    (1993). Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4. Nature 360, 560–563
    OpenUrl
    1. Brennwald, P.,
    2. Kearns, B.,
    3. Champion, K.,
    4. Keränen, V. and
    5. Novick, P.
    (1994). Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258
    OpenUrlCrossRefPubMedWeb of Science
    1. Bretscher, A.,
    2. Drees, B.,
    3. Harsay, E.,
    4. Schott, D. and
    5. Wang, T.
    (1994). What are the basic functions of microfilaments? Insights from studies in budding yeast. J. Cell Biol 126, 821–825
    OpenUrlFREE Full Text
    1. Brewster, J.,
    2. de Valoir, T.,
    3. Dwyer, N.,
    4. Winter, E. and
    5. Gustin, M.
    (1993). An osmosensing signal transduction pathway in yeast. Science 259, 1760–1763
    OpenUrlAbstract/FREE Full Text
    1. Brewster, J. and
    2. Gustin, M.
    (1994). Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 10, 425–439
    OpenUrlCrossRefPubMedWeb of Science
    1. Brockerhoff, S. and
    2. Davis, T.
    (1992). Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J. Cell Biol 118, 619–629
    OpenUrlAbstract/FREE Full Text
    1. Brown, S.
    (1997). Myosins in yeast. Curr. Opin. Cell Biol 9, 44–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Brown, J.,
    2. Jaquenoud, M.,
    3. Gulli, M. P.,
    4. Chant, J. and
    5. Peter, M.
    (1997). Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev 11, 2972–2982
    OpenUrlAbstract/FREE Full Text
    1. Brown, S.
    (1999). Cooperation between microtubule-and actin-based motor proteins. Annu. Rev. Cell Dev. Biol 15, 63–80
    OpenUrlCrossRefPubMedWeb of Science
    1. Bulawa, C.
    (1992). CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol. Cell. Biol 12, 1764–1776
    OpenUrlAbstract/FREE Full Text
    1. Carr, C.,
    2. Grote, E.,
    3. Munson, M.,
    4. Hughson, F. and
    5. Novick, P.
    (1999). Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol 146, 333–344
    OpenUrlAbstract/FREE Full Text
    1. Catlett, N. and
    2. Weisman, L.
    (1998). The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc. Nat. Acad. Sci. USA 95, 14799–14804
    OpenUrlAbstract/FREE Full Text
    1. Chant, J. and
    2. Herskowitz, I.
    (1991). Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65, 1203–1212
    OpenUrlCrossRefPubMedWeb of Science
    1. Chant, J. and
    2. Pringle, J.
    (1995). Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J. Cell Biol 129, 751–765
    OpenUrlAbstract/FREE Full Text
    1. Chant, J.,
    2. Mischke, M.,
    3. Mitchell, E.,
    4. Herskowitz, I. and
    5. Pringle, J.
    (1995). Role of Bud3p in producing the axial budding pattern of yeast. J. Cell Biol 129, 767–778
    OpenUrlAbstract/FREE Full Text
    1. Chant, J.
    (1999). Cell Polarity in yeast. Annu. Rev. Cell Dev. Biol 15, 365–391
    OpenUrlCrossRefPubMedWeb of Science
    1. Chavrier, P.,
    2. Vingron, M.,
    3. Sander, C.,
    4. Simons, K. and
    5. Zerial, M.
    (1990). Molecular cloning of YPT1 / SEC4 -related cDNAs from an epithelial cell line. Mol. Biol. Cell 10, 6578–6585
    OpenUrlCrossRef
    1. Chenevert, J.,
    2. Corrado, K.,
    3. Bender, A.,
    4. Pringle, J. and
    5. Herskowitz, I.
    (1992). A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356, 77–79
    OpenUrlCrossRefPubMedWeb of Science
    1. Chuang, J. and
    2. Schekman, R.
    (1996). Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J. Cell Biol 135, 597–610
    OpenUrlAbstract/FREE Full Text
    1. Cid, V.,
    2. Duran, A.,
    3. del Rey, F.,
    4. Snyder, M.,
    5. Nombela, C. and
    6. Sanchez, M.
    (1995). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev. 59, 345–386
    OpenUrlAbstract/FREE Full Text
    1. Colwill, K.,
    2. Field, D.,
    3. Moore, L.,
    4. Friesen, J. and
    5. Andrews, B.
    (1999). In vivo analysis of the domains of yeast Rvs167p suggests Rvs167p function is mediated through multiple protein interactions. Genetics 152, 881–893
    OpenUrlAbstract/FREE Full Text
    1. Cope, M. J.,
    2. Yang, S.,
    3. Shang, C. and
    4. Drubin, D.
    (1999). Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J. Cell Biol 144, 1203–1218
    OpenUrlAbstract/FREE Full Text
    1. Crouzet, M.,
    2. Urdaci, M.,
    3. Dulau, L. and
    4. Aigle, M.
    (1991). Yeast mutant affected for viability upon nutrient starvation: characterization and cloning of the RVS161 gene. Yeast 7, 727–743
    OpenUrlCrossRefPubMedWeb of Science
    1. Cvrcková, F.,
    2. De Virgilio, C.,
    3. Manser, E.,
    4. Pringle, J. and
    5. Nasmyth, K.
    (1995). Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev 9, 1817–1830
    OpenUrlAbstract/FREE Full Text
    1. Davis, T. and
    2. Thorner, J.
    (1989). Vertebrate and yeast calmodulin, despite significant sequence divergence, are functionally interchangeable. Proc. Nat. Acad. Sci. USA 86, 7909–7913
    OpenUrlAbstract/FREE Full Text
    1. Delley, P. A. and
    2. Hall, M.
    (1999). Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol 147, 163–174
    OpenUrlAbstract/FREE Full Text
    1. DeMarini, D.,
    2. Adams, A.,
    3. Fares, H.,
    4. De Virgilio, C.,
    5. Valle, G.,
    6. Chuang, J. and
    7. Pringle, J.
    (1997). A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J. Cell Biol 139, 75–93
    OpenUrlAbstract/FREE Full Text
    1. Doyle, T. and
    2. Botstein, D.
    (1996). Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Nat. Acad. Sci. USA 93, 3886–3891
    OpenUrlAbstract/FREE Full Text
    1. Drees, B.,
    2. Brown, C.,
    3. Barrel, B. and
    4. Bretscher, A.
    (1995). Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions. J. Cell Biol 128, 383–392
    OpenUrlAbstract/FREE Full Text
    1. Drgonová, J.,
    2. Drgon, T.,
    3. Roh, D. H. and
    4. Cabib, E.
    (1999). The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J. Cell Biol 146, 373–387
    OpenUrlAbstract/FREE Full Text
    1. Drubin, D.,
    2. Miller, K. and
    3. Botstein, D.
    (1988). Yeast actin-binding proteins: evidence for a role in morphogenesis. J. Cell Biol 107, 2551–2561
    OpenUrlAbstract/FREE Full Text
    1. Drubin, D.,
    2. Mulholland, J.,
    3. Zhu, Z. and
    4. Botstein, D.
    (1990). Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature 343, 288–290
    OpenUrlCrossRefPubMedWeb of Science
    1. Drubin, D. and
    2. Nelson, W. J.
    (1996). Origins of cell polarity. Cell 84, 335–344
    OpenUrlCrossRefPubMedWeb of Science
    1. Eby, J.,
    2. Holly, S.,
    3. van Drogan, F.,
    4. Grishin, A.,
    5. Peter, M.,
    6. Drubin, D. and
    7. Blumer, K.
    (1998). Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr. Biol 8, 967–970
    OpenUrlCrossRefPubMedWeb of Science
    1. Epp, J. and
    2. Chant, J.
    (1997). An IQGAP-related protein controls actin-ring formation and cytokinesis in yeast. Curr. Biol 7, 921–929
    OpenUrlCrossRefPubMed
    1. Evangelista, M.,
    2. Blundell, K.,
    3. Longtine, M.,
    4. Chow, C.,
    5. Adames, N.,
    6. Pringle, J.,
    7. Peter, M. and
    8. Boone, C.
    (1997). Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–121
    OpenUrlAbstract/FREE Full Text
    1. Ferrigno, P.,
    2. Posas, F.,
    3. Koepp, D.,
    4. Saito, H. and
    5. Silver, P.
    (1998). Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importinhomologs NMD5 and XPO1. EMBO J 17, 5606–5614
    OpenUrlAbstract
    1. Field, C.,
    2. Li, R. and
    3. Oegema, K.
    (1999). Cytokinesis in eukaryotes: a mechanistic comparison. Curr. Opin. Cell Biol 11, 68–80
    OpenUrlCrossRefPubMedWeb of Science
    1. Finger, F. and
    2. Novick, P.
    (1998). Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol 142, 609–612
    OpenUrlFREE Full Text
    1. Finger, F.,
    2. Hughes, T. and
    3. Novick, P.
    (1998). Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571
    OpenUrlCrossRefPubMedWeb of Science
    1. Flescher, E.,
    2. Madden, K. and
    3. Snyder, M.
    (1993). Components required for cytokinesis are important for bud site selection in yeast. J. Cell Biol 122, 373–386
    OpenUrlAbstract/FREE Full Text
    1. Ford, S. and
    2. Pringle, J.
    (1991). Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Dev. Genet 12, 281–292
    OpenUrlCrossRefPubMedWeb of Science
    1. Freeman, N.,
    2. Chen, Z.,
    3. Horenstein, J.,
    4. Weber, A. and
    5. Field, J.
    (1995). An actin-monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J. Biol. Chem 270, 5680–5685
    OpenUrlAbstract/FREE Full Text
    1. Freeman, N.,
    2. Lila, T.,
    3. Mintzer, K.,
    4. Chen, Z.,
    5. Pahk, A.,
    6. Ren, R.,
    7. Drubin, D. and
    8. Field, J.
    (1996). A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization. Mol. Cell. Biol 16, 548–556
    OpenUrlAbstract/FREE Full Text
    1. Garcia, E.,
    2. Gatti, E.,
    3. Butler, M.,
    4. Burton, J. and
    5. De Camilli, P.
    (1994). A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc. Nat. Acad. Sci. USA 91, 2003–2007
    OpenUrlAbstract/FREE Full Text
    1. Gehrung, S. and
    2. Snyder, M.
    (1990). The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-induced morphogenesis and efficient mating. J. Cell Biol 111, 1451–1464
    OpenUrlAbstract/FREE Full Text
    1. Geli, M. I. and
    2. Riezman, H.
    (1996). Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272, 533–535
    OpenUrlAbstract
    1. Geli, M. I. and
    2. Riezman, H.
    (1998). Endocytic internalization in yeast and animal cells: similar and different. J. Cell Sci 111, 1031–1037
    OpenUrlAbstract/FREE Full Text
    1. Geli, M. I.,
    2. Wesp, A. and
    3. Riezman, H.
    (1998). Distinct functions of calmodulin are required for the uptake of receptor-mediated endocytosis in yeast: the type I myosin Myo5p is one of the calmodulin targets. EMBO J 17, 635–647
    OpenUrlAbstract/FREE Full Text
    1. Gerst, J.,
    2. Ferguson, K.,
    3. Vojtek, A.,
    4. Wigler, M. and
    5. Field, J.
    (1991). CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Mol. Biol. Cell 11, 1248–1257
    OpenUrlCrossRef
    1. Gonzalez, I.,
    2. Buonomo, S.,
    3. Nasmyth, K. and
    4. von Ahsen, U.
    (1999). ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr. Biol 9, 337–340
    OpenUrlCrossRefPubMedWeb of Science
    1. Goode, B.,
    2. Drubin, D. and
    3. Lappalainen, P.
    (1998). Regulation of the cortical actin cytoskeleton in budding yeast by twinfilin, a ubiquitous actin monomer-sequestering protein. J. Cell Biol 142, 723–733
    OpenUrlAbstract/FREE Full Text
    1. Goode, B.,
    2. Wong, J.,
    3. Butty, A. C.,
    4. Peter, M.,
    5. McCormack, A.,
    6. Yates, J.,
    7. Drubin, D. and
    8. Barnes, G.
    (1999). Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeleton in yeast. J. Cell Biol 144, 83–98
    OpenUrlAbstract/FREE Full Text
    1. Goodson, H.,
    2. Anderson, B.,
    3. Warrick, H.,
    4. Pon, L. and
    5. Spudich., J.
    (1996). Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J. Cell Biol 133, 1277–1291
    OpenUrlAbstract/FREE Full Text
    1. Govindan, B.,
    2. Bowser, R. and
    3. Novick, P.
    (1995). The role of Myo2p, a yeast class V myosin, in vesicular transport. J. Cell Biol 128, 1055–1068
    OpenUrlAbstract/FREE Full Text
    1. Guo, W.,
    2. Roth, D.,
    3. Walch-Solimena, C. and
    4. Novick, P.
    (1999). The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18, 1071–1080
    OpenUrlAbstract
    1. Guo, W.,
    2. Grant, A. and
    3. Novick, P.
    (1999). Exo84p is an exocyst protein essential for secretion. J. Biol. Chem 274, 23558–23564
    OpenUrlAbstract/FREE Full Text
    1. Haarer, B. and
    2. Pringle, J.
    (1987). Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol. Cell. Biol 7, 3678–3687
    OpenUrlAbstract/FREE Full Text
    1. Haarer, B.,
    2. Lillie, S.,
    3. Adams, A.,
    4. Magdolen, V.,
    5. Bandlow, W. and
    6. Brown, S.
    (1990). Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J. Cell Biol 110, 105–114
    OpenUrlAbstract/FREE Full Text
    1. Haarer, B.,
    2. Petzold, A.,
    3. Lillie, S. and
    4. Brown, S.
    (1994). Identification of MYO4, a second class V myosin gene in yeast. J. Cell Sci 107, 1055–1064
    OpenUrlAbstract/FREE Full Text
    1. Haarer, B.,
    2. Corbett, A.,
    3. Kweon, Y.,
    4. Petzold, A.,
    5. Silver, P. and
    6. Brown, S.
    (1996). SEC3 mutations are synthetically lethal with profilin mutations and cause defects in diploid-specific bud-site selection. Genetics 144, 495–510
    OpenUrlAbstract/FREE Full Text
    1. Harsay, E. and
    2. Bretscher, A.
    (1995). Parallel secretory pathways to the cell surface in yeast. J. Cell Biol 131, 297–310
    OpenUrlAbstract/FREE Full Text
    1. Harsay, E. and
    2. Schekman, R.
    (1998). A subset of secretory cargo in yeast transits an endosomal compartment prior to exocytosis. Mol. Biol. Cell 9, 208–.
    OpenUrl
    1. Hartwell, L.
    (1971). Genetic control of the cell division cycle in yeast. IV.Genes controlling bud emergence and cytokinesis. Exp. Cell Res 69, 265–276
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartwell, L.,
    2. Culotti, J.,
    3. Pringle, J. and
    4. Reid, B.
    (1974). Genetic control of the cell division cycle in yeast. Science 183, 46–51
    OpenUrlFREE Full Text
    1. Heil-Chapdelaine, R.,
    2. Trna, N. and
    3. Cooper, J.
    (1998). The role of Saccharomyces cerevisiae coronin in the actin and microtubule cytoskeletons. Curr. Biol 8, 1281–1284
    OpenUrlCrossRefPubMed
    1. Henkel, M. K.,
    2. Pott, G.,
    3. Henkel, A.,
    4. Juliano, L.,
    5. Kam, C. M.,
    6. Powers, J. and
    7. Franzusoff, A.
    (1999). Endocytic delivery of intramolecularly quenched substrates and inhibitors to the intracellular yeast Kex2 protease. Biochem. J 341, 445–452
    OpenUrlAbstract/FREE Full Text
    1. Hermann, G.,
    2. King, E. and
    3. Shaw, J.
    (1997). The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122
    OpenUrlAbstract/FREE Full Text
    1. Hicke, L.,
    2. Zanolari, B.,
    3. Pypaert, M.,
    4. Rohrer, J. and
    5. Riezman, H.
    (1997). Transport through the yeast endocytic pathway occurs through morphologically distinct compartments and requires an active secretory pathway and Sec18p/N-ethylmaleimide-sensitive fusion protein. Mol. Biol. Cell 8, 13–31
    OpenUrlAbstract/FREE Full Text
    1. Hicke, L.,
    2. Zanolari, B. and
    3. Riezman, H.
    (1998). Cytoplasmic tail phosphorylation of the-factor receptor is required for its ubiquitination and internalization. J. Cell Biol 141, 349–358
    OpenUrlAbstract/FREE Full Text
    1. Holthuis, J.,
    2. Nichols, B.,
    3. Dhruvakumar, S. and
    4. Pelham, H.
    (1998). Two syntaxin homologs in the TGN/endosomal system of yeast. EMBO J 17, 113–126
    OpenUrlAbstract
    1. Holthuis, J.,
    2. Nichols, B. and
    3. Pelham, H.
    (1998). The syntaxin Tlg1p mediates trafficking of chitin synthase III to polarized growth sites in yeast. Mol. Biol. Cell 9, 3383–3397
    OpenUrlAbstract/FREE Full Text
    1. Hsu, S.,
    2. Ting, A.,
    3. Hazuka, C.,
    4. Davanger, S.,
    5. Kenny, J.,
    6. Kee, Y. and
    7. Scheller, R.
    (1996). The mammalian brain rsec6/8 complex. Neuron 17, 1209–1219
    OpenUrlCrossRefPubMedWeb of Science
    1. Huang, J. D.,
    2. Brady, S.,
    3. Richards, B.,
    4. Stenoien, D.,
    5. Resau, J.,
    6. Copeland, N. and
    7. Jenkins, N.
    (1999). Direct interaction of microtubule-and actin-based transport motors. Nature 397, 267–270
    OpenUrlCrossRefPubMedWeb of Science
    1. Iida, K.,
    2. Moriyama, K.,
    3. Matsumoto, S.,
    4. Kawasaki, H.,
    5. Nishida, E. and
    6. Yahara, I.
    (1993). Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and depolymerizing protein. Gene 124, 115–120
    OpenUrlCrossRefPubMedWeb of Science
    1. Imamura, H.,
    2. Tanaka, K.,
    3. Hihara, T.,
    4. Umikawa, M.,
    5. Kamei, T.,
    6. Takahashi, K.,
    7. Sasaki, T. and
    8. Takai, Y.
    (1997). Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 16, 2745–2755
    OpenUrlAbstract
    1. Jansen, R. P.,
    2. Dowzer, C.,
    3. Michaelis, C.,
    4. Galova, M. and
    5. Nasmyth, K.
    (1996). Mother cell-specific HO expression in budding yeast depends on the unconventional myosin Myo4p and other cytoplasmic proteins. Cell 84, 687–697
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson, D. and
    2. Pringle, J.
    (1990). Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol 111, 143–152
    OpenUrlAbstract/FREE Full Text
    1. Johnston, G.,
    2. Prendergast, J. and
    3. Singer, R.
    (1991). The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol 113, 539–551
    OpenUrlAbstract/FREE Full Text
    1. Kamei, T.,
    2. Tanaka, K.,
    3. Hihara, T.,
    4. Umikawa, M.,
    5. Imamura, H.,
    6. Kikyo, M.,
    7. Ozaki, K. and
    8. Takai, Y.
    (1998). Interaction of Bnr1p with a novel src homology 3 domain-containing Hof1p. J. Biol. Chem 273, 28341–28345
    OpenUrlAbstract/FREE Full Text
    1. Karpova, T.,
    2. Leptit, M. and
    3. Cooper, J.
    (1993). Mutations that enhance the cap2 null mutant phenotype in Saccharomyces cerevisiae affect the actin cytoskeleton, morphogenesis and pattern of growth. Genetics 135, 693–709
    OpenUrlAbstract/FREE Full Text
    1. Karpova, T.,
    2. McNally, J.,
    3. Moltz, S. and
    4. Cooper, J.
    (1998). Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. J. Cell Biol 142, 1501–1517
    OpenUrlAbstract/FREE Full Text
    1. Kim, H.,
    2. Haarer, B. and
    3. Pringle, J.
    (1991). Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol 112, 535–544
    OpenUrlAbstract/FREE Full Text
    1. Kubler, E. and
    2. Riezman, H.
    (1993). Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J 12, 2855–2862
    OpenUrlPubMedWeb of Science
    1. Kubler, E.,
    2. Schimmöller, F. and
    3. Riezman, H.
    (1994). Calcium-independent calmodulin requirement for endocytosis in yeast. EMBO J 13, 5539–5546
    OpenUrlPubMedWeb of Science
    1. Kultz, D.,
    2. Garcia-Perez, A.,
    3. Ferraris, J. and
    4. Burg, M.
    (1997). Distinct regulation of osmoprotective genes in yeast and mammals. J. Biol. Chem 272, 13165–13170
    OpenUrlAbstract/FREE Full Text
    1. Langford, G.
    (1995). Actin-and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol 7, 82–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Lappalainen, P. and
    2. Drubin, D.
    (1997). Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82
    OpenUrlCrossRefPubMedWeb of Science
    1. Leberer, E.,
    2. Wu, C.,
    3. Leeuw, T.,
    4. Fourest-Lieuvin, A.,
    5. Segall, J. and
    6. Thomas, D.
    (1997). Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J 16, 83–97
    OpenUrlAbstract
    1. Lee, K.,
    2. Irie, K.,
    3. Gotoh, Y.,
    4. Watanabe, Y.,
    5. Araki, H.,
    6. Nishida, E.,
    7. Matsumoto, K. and
    8. Levin, D.
    (1993). A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signaling by protein kinase C. Mol. Cell Biol 13, 3067–3075
    OpenUrlAbstract/FREE Full Text
    1. Lee, J.,
    2. Colwill, K.,
    3. Aneliunas, V.,
    4. Tannyson, C.,
    5. Moore, L.,
    6. Ho, Y. and
    7. Andrews, B.
    (1998). Interaction of yeast Rvs167 and Pho85 cyclin-dependent kinase complexes may link the cell cycle to the actin cytoskeleton. Curr. Biol 8, 1310–1321
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee, L.,
    2. Klee, S.,
    3. Evangelista, M.,
    4. Boone, C. and
    5. Pellham, D.
    (1999). Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol 144, 947–961
    OpenUrlAbstract/FREE Full Text
    1. Lew, D. and
    2. Reed, S.
    (1995). Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev 5, 17–23
    OpenUrlCrossRefPubMed
    1. Li, R.
    (1997). Bee1, a yeast protein with homology to Wiscott-Aldrich Syndrome Protein, is critical for the assembly of cortical actin cytoskeleton. J. Cell Biol 136, 649–658
    OpenUrlAbstract/FREE Full Text
    1. Lila, T. and
    2. Drubin, D.
    (1997). Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol. Biol. Cell 8, 367–385
    OpenUrlAbstract/FREE Full Text
    1. Lillie, S. and
    2. Brown, S.
    (1992). Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358–361
    OpenUrlCrossRefPubMedWeb of Science
    1. Lillie, S. and
    2. Brown, S.
    (1998). Smy1p, a kinesin-related protein that does not require microtubules. J. Cell Biol 140, 873–883
    OpenUrlAbstract/FREE Full Text
    1. Lippincott, J. and
    2. Li, R.
    (1998). Dual function of Cyk2, a cdc15/PSTPIP family protein, in regulating actomyosin ring dynamics and septin distribution. J. Cell Biol 143, 1947–1960
    OpenUrlAbstract/FREE Full Text
    1. Lippincott, J. and
    2. Li, R.
    (1998). Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J. Cell Biol 140, 355–366
    OpenUrlAbstract/FREE Full Text
    1. Liu, H. and
    2. Bretscher, A.
    (1989). Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell 57, 233–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Long, R.,
    2. Singer, R.,
    3. Meng, X.,
    4. Gonzalez, I.,
    5. Nasmyth, K. and
    6. Jansen, R. P.
    (1997). Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277, 383–387
    OpenUrlAbstract/FREE Full Text
    1. Longtine, M.,
    2. Fares, J. and
    3. Pringle, J.
    (1998). Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J. Cell Biol 143, 719–736
    OpenUrlAbstract/FREE Full Text
    1. Madania, A.,
    2. Dumoulin, P.,
    3. Grava, S.,
    4. Kitamoto, H.,
    5. Schärer-Brodbeck, C.,
    6. Soulard, A.,
    7. Moreau, V. and
    8. Winsor, B.
    (1999). The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich Syndrome Protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521–3538
    OpenUrlAbstract/FREE Full Text
    1. Manning, B.,
    2. Padmanabha, R. and
    3. Snyder, M.
    (1997). The Rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cytoskeletal functions in Saccharomyces cerevisiae. Mol. Biol. Cell 8, 1829–1844
    OpenUrlAbstract/FREE Full Text
    1. Martin, H.,
    2. Mendoza, A.,
    3. Rodriguez-Pachon, J.,
    4. Molina, M. and
    5. Nombela, C.
    (1997). Characterization of SKM1, a Saccharomyces cerevisiae gene encoding a novel Ste20/PAK-like protein kinase. Mol. Microbiol 23, 431–444
    OpenUrlCrossRefPubMed
    1. Mazur, P.,
    2. Morin, N.,
    3. Baginsky, W.,
    4. el-Sherbeini, M.,
    5. Clemas, J.,
    6. Nielson, J. and
    7. Foor, F.
    (1995). Differential expression and function of two homologous subunits of yeast 1, 3-beta-D-glucan synthase. Mol. Cell. Biol 15, 5671–5681
    OpenUrlAbstract/FREE Full Text
    1. Mazzoni, C.,
    2. Zarzov, P.,
    3. Ranbourg, A. and
    4. Mann, C.
    (1993). The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J. Cell Biol 123, 1821–1833
    OpenUrlAbstract/FREE Full Text
    1. McCaffrey, M.,
    2. Johnson, J.,
    3. Goud, B.,
    4. Myers, A.,
    5. Rossier, J.,
    6. Popoff, M.,
    7. Madaule, P. and
    8. Boquet, P.
    (1991). The small GTP-binding protein Rho1p localized on the Golgi apparatus and post-Golgi vesicles in Saccharomyces cerevisiae. J. Cell Biol 115, 309–319
    OpenUrlAbstract/FREE Full Text
    1. McCann, R. and
    2. Craig, S.
    (1997). The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc. Nat. Acad. Sci. USA 94, 5679–5684
    OpenUrlAbstract/FREE Full Text
    1. Mehta, A.,
    2. Rock, R.,
    3. Rief, M.,
    4. Spudich, J.,
    5. Mooseker, M. and
    6. Cheney, R.
    (1999). Myosin-V is a processive actin-based motor. Nature 400, 590–593
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller, R. and
    2. Rose, M.
    (1998). Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol 140, 377–390
    OpenUrlAbstract/FREE Full Text
    1. Miller, R.,
    2. Matheos, D. and
    3. Rose, M.
    (1999). The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol 144, 963–975
    OpenUrlAbstract/FREE Full Text
    1. Moon, A.,
    2. Janmey, P.,
    3. Louie, A. and
    4. Drubin, D.
    (1993). Cofilin is an essential component of the yeast cortical cytoskeleton. J. Cell Biol 120, 421–435
    OpenUrlAbstract/FREE Full Text
    1. Moreau, V.,
    2. Madania, A.,
    3. Martin, R. and
    4. Winsor, B.
    (1996). The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton. J. Cell Biol 134, 117–132
    OpenUrlAbstract/FREE Full Text
    1. Mösch, H. U. and
    2. Fink, G.
    (1997). Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145, 671–684
    OpenUrlAbstract/FREE Full Text
    1. Mulholland, J.,
    2. Preuss, D.,
    3. Moon, A.,
    4. Wong, A.,
    5. Drubin, D. and
    6. Botstein, D.
    (1994). Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol 125, 381–391
    OpenUrlAbstract/FREE Full Text
    1. Mulholland, J.,
    2. Wesp, A.,
    3. Riezman, H. and
    4. Botstein, D.
    (1997). Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretory vesicle. Mol. Biol. Cell 8, 1481–1499
    OpenUrlAbstract/FREE Full Text
    1. Mulholland, J.,
    2. Konopka, J.,
    3. Singer-Kruger, B.,
    4. Zerial, M. and
    5. Botstein, D.
    (1999). Visualization of receptor-mediated endocytosis in yeast. Mol. Biol. Cell 10, 799–817
    OpenUrlAbstract/FREE Full Text
    1. Munchow, S.,
    2. Sauter, C. and
    3. Jansen, R. P.
    (1999). Association of the class V myosin Myo4p with a localized messenger RNA in budding yeast depends on She proteins. J. Cell Sci 112, 1511–1518
    OpenUrlAbstract/FREE Full Text
    1. Munemitsu, S.,
    2. Innis, M.,
    3. Clark, R.,
    4. McCormick, R.,
    5. Ullrich, A. and
    6. Polakis, P.
    (1990). Molecular cloning and expression of a G25K cDNA, the human homolog of the yeast cell cycle gene CDC42. Mol. Cell. Biol 10, 5977–5982
    OpenUrlAbstract/FREE Full Text
    1. Naqvi, S.,
    2. Zahn, R.,
    3. Mitchell, D.,
    4. Stevenson, B. and
    5. Munn, A.
    (1998). The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr. Biol 8, 959–962
    OpenUrlCrossRefPubMedWeb of Science
    1. Nern, A. and
    2. Arkowitz, R.
    (1999). A Cdc24p-Far1p-Gprotein complex required for yeast orientation during mating. J. Cell Biol 144, 1187–1202
    OpenUrlAbstract/FREE Full Text
    1. Novarro, P.,
    2. Durrens, P. and
    3. Aigle, M.
    (1997). Protein-protein interaction between the RVS161 and RVS167 gene products of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1343, 187–192
    OpenUrlCrossRefPubMed
    1. Novick, P. and
    2. Botstein, D.
    (1985). Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40, 405–416
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohya, Y. and
    2. Botstein, D.
    (1994). Diverse essential functions revealed by complementing yeast calmodulin mutants. Science 263, 963–966
    OpenUrlAbstract/FREE Full Text
    1. Ostrander, D.,
    2. Ernst, E.,
    3. Lavoie, T. and
    4. Gorman, J.
    (1999). Polyproline binding is an essential function of human profilin in yeast. Eur. J. Biochem 262, 26–35
    OpenUrlCrossRefPubMedWeb of Science
    1. Panek, H.,
    2. Stepp, J.,
    3. Engle, H.,
    4. Marks, K.,
    5. Tan, P.,
    6. Lemmon, S. and
    7. Robinson, L.
    (1997). Suppressors of YCK -encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex. EMBO J 16, 4194–4204
    OpenUrlAbstract
    1. Park, H. O.,
    2. Chant, J. and
    3. Herskowitz, I.
    (1993). BUD2 encodes a GTPase-activating protein for Bud1/Rsr1 necessary for proper bud-site selection in yeast. Nature 365, 269–274
    OpenUrlCrossRefPubMedWeb of Science
    1. Park, H. O.,
    2. Sanson, A. and
    3. Herskoitz, I.
    (1999). Localization of Bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site. Genes Dev 13, 1912–1917
    OpenUrlAbstract/FREE Full Text
    1. Peter, M.,
    2. Neiman, A.,
    3. Park, H. O.,
    4. van Lohuizen, M. and
    5. Herskowitz, I.
    (1996). Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J 15, 7046–7059
    OpenUrlPubMedWeb of Science
    1. Pruyne, D.,
    2. Schott, D. and
    3. Bretscher, A.
    (1998). Tropomyosin-containing actin cables direct the Myo2p-dependent delivery of secretory vesicles in budding yeast. J. Cell Biol 143, 1931–1945
    OpenUrlAbstract/FREE Full Text
    1. Qadota, H.,
    2. Python, C.,
    3. Inoue, S.,
    4. Arisawa, M.,
    5. Anraku, Y.,
    6. Zheng, Y.,
    7. Watanabe, T.,
    8. Levin, D. and
    9. Ohya, Y.
    (1996). Identification of yeast Rho1p GTPase as a regulatory subunit of 1, 3--glucan synthase. Science 272, 279–281
    OpenUrlAbstract
    1. Raths, S.,
    2. Rohrer, J.,
    3. Crausaz, F. and
    4. Riezman, H.
    (1993). end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J. Cell Biol 120, 55–65
    OpenUrlAbstract/FREE Full Text
    1. Reck-Peterson, S.,
    2. Novick, P. and
    3. Mooseker, M.
    (1999). The tail of a yeast class V myosin, Myo2p, functions as a localization domain. Mol. Biol. Cell 10, 1001–1017
    OpenUrlAbstract/FREE Full Text
    1. Richman, T.,
    2. Sawyer, M. and
    3. Johnson, D.
    (1999). The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J. Biol. Chem 274, 16861–16870
    OpenUrlAbstract/FREE Full Text
    1. Robinson, L.,
    2. Menold, M.,
    3. Garrett, S. and
    4. Culbertson, M.
    (1993). Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis. Mol. Cell. Biol 13, 2870–2881
    OpenUrlAbstract/FREE Full Text
    1. Robinson, N.,
    2. Gou, L.,
    3. Imai, J.,
    4. Toh-E, A.,
    5. Matsui, Y. and
    6. Tamanoi, F.
    (1999). Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol. Cell. Biol 19, 3580–3587
    OpenUrlAbstract/FREE Full Text
    1. Robinson, L.,
    2. Bradley, C.,
    3. Bryan, J.,
    4. Jerome, A.,
    5. Kweon, Y. and
    6. Panek, H.
    (1999). The Yck2 yeast casein kinase 1 isoform shows cell cycle-specific localization to sites of polarized growth and is required for proper septin organization. Mol. Biol. Cell 10, 1077–1092
    OpenUrlAbstract/FREE Full Text
    1. Rodal, A.,
    2. Tetrault, J.,
    3. Lappalainen, P.,
    4. Drubin, D. and
    5. Amberg, D.
    (1999). Aip1p interacts with cofilin to disassemble actin filaments. J. Cell Biol 145, 1251–1264
    OpenUrlAbstract/FREE Full Text
    1. Rodriguez, J. and
    2. Paterson, B.
    (1990). Yeast myosin heavy chain mutant: maintenance of the cell type specific budding pattern and the normal deposition of chitin and cell wall components requires an intact myosin heavy chain gene. Cell Motil. Cytoskel 17, 301–308
    OpenUrlCrossRefPubMedWeb of Science
    1. Roemer, T.,
    2. Madden, K.,
    3. Chang, J. and
    4. Snyder, M.
    (1996). Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Genes Dev 10, 777–793
    OpenUrlAbstract/FREE Full Text
    1. Roemer, T.,
    2. Vallier, L.,
    3. Sheu, Y. J. and
    4. Snyder, M.
    (1998). The Spa2-related protein, Sph1p, is important for polarized growth in yeast. J. Cell Sci 111, 479–494
    OpenUrlAbstract/FREE Full Text
    1. Rose, L. and
    2. Kemphues, K.
    (1998). Early patterning of the C. elegans embryo. Annu. Rev. Genet 32, 521–545
    OpenUrlCrossRefPubMedWeb of Science
    1. Sanders, S. and
    2. Herskowitz, I.
    (1996). The Bud4 protein of yeast, required for axial budding, is localized to the mother/bud neck in a cell cycle-dependent manner. J. Cell Biol 134, 413–427
    OpenUrlAbstract/FREE Full Text
    1. Santos, B. and
    2. Snyder, M.
    (1997). Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J. Cell Biol 136, 95–110
    OpenUrlAbstract/FREE Full Text
    1. Schandel, K. and
    2. Jenness, D.
    (1994). Direct evidence for ligand-induced internalization of the yeast alpha-factor pheromone receptor. Mol. Cell. Biol 14, 7245–7255
    OpenUrlAbstract/FREE Full Text
    1. Schott, D.,
    2. Ho, J.,
    3. Pruyne, D. and
    4. Bretscher, A.
    (1999). The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol 147, 791–808
    OpenUrlAbstract/FREE Full Text
    1. Shaw, J.,
    2. Mol, P.,
    3. Bowers, B.,
    4. Silverman, S.,
    5. Valdivieso, M.,
    6. Duran, A. and
    7. Cabib, E.
    (1991). The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J. Cell Biol 114, 111–123
    OpenUrlAbstract/FREE Full Text
    1. Shinjo, K.,
    2. Koland, J.,
    3. Hart, M.,
    4. Narasimhan, V.,
    5. Johnson, D.,
    6. Evans, R. and
    7. Cerione, R.
    (1990). Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc. Nat. Acad. Sci. USA 87, 9853–9857
    OpenUrlAbstract/FREE Full Text
    1. Sil, A. and
    2. Herskowitz, I.
    (1996). Identification of an asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84, 711–722
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon, V.,
    2. Swayne, T. and
    3. Pon, L.
    (1995). Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J. Cell Biol 130, 345–354
    OpenUrlAbstract/FREE Full Text
    1. Sivadon, P.,
    2. Bauer, F.,
    3. Aigle, M. and
    4. Crouzet, M.
    (1995). Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: the Rvs161 protein shares common domains with the brain protein amphiphysin. Mol. Gen. Genet 246, 485–495
    OpenUrlCrossRefPubMedWeb of Science
    1. Sloat, B.,
    2. Adams, A. and
    3. Pringle, J.
    (1981). Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J. Cell Biol 89, 395–405
    OpenUrlAbstract/FREE Full Text
    1. Snyder, M.
    (1989). The SPA2 protein of yeast localizes to sites of cell growth. J. Cell Biol 108, 1419–1429
    OpenUrlAbstract/FREE Full Text
    1. Stevens, R. and
    2. Davis, T.
    (1998). Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J. Cell Biol 142, 711–722
    OpenUrlAbstract/FREE Full Text
    1. Takizawa, P.,
    2. Sil, A.,
    3. Swedlow, J.,
    4. Herskowitz, I. and
    5. Vale, R.
    (1997). Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389, 90–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Tang, H. Y.,
    2. Munn, A. and
    3. Cai, M.
    (1997). EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae. Mol. Cell. Biol 17, 4294–4304
    OpenUrlAbstract/FREE Full Text
    1. TerBush, D. and
    2. Novick, P.
    (1995). Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol 130, 299–312
    OpenUrlAbstract/FREE Full Text
    1. Theesfeld, C.,
    2. Irazoqui, J.,
    3. Bloom, L. and
    4. Lew, D.
    (1999). The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J. Cell Biol 146, 1019–1032
    OpenUrlAbstract/FREE Full Text
    1. Ting, A.,
    2. Hazuka, C.,
    3. Hsu, S.,
    4. Kirk, M.,
    5. Bean, A. and
    6. Scheller, R.
    (1995). rSec6 and rSec8, mammalian homologs of yeast proteins essential for secretion. Proc. Nat. Acad. Sci. USA 92, 9613–9617
    OpenUrlAbstract/FREE Full Text
    1. Toenjes, K.,
    2. Sawyer, M. and
    3. Johnson, D.
    (1999). The guanine-nucleotide-exchange factor Cdc24p is targeted to the nucleus and polarized growth sites. Curr. Biol 9, 1183–1186
    OpenUrlCrossRefPubMedWeb of Science
    1. Vaduva, G.,
    2. Martin, N. and
    3. Hopper, A.
    (1997). Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton. J. Cell Biol 139, 1821–1833
    OpenUrlAbstract/FREE Full Text
    1. Vaduva, G.,
    2. Martinez-Quiles, N.,
    3. Anton, I.,
    4. Martin, N.,
    5. Geha, R.,
    6. Hopper, A. and
    7. Ramesh, N.
    (1999). The human WASP-interacting protein, WIP, activates the cell polarity pathway in yeast. J. Biol. Chem 274, 17103–17108
    OpenUrlAbstract/FREE Full Text
    1. Valtz, N. and
    2. Herskowitz, I.
    (1996). Pea2 protein of yeast is localized to sites of polarized growth and is required for efficient mating and bipolar budding. J. Cell Biol 135, 725–739
    OpenUrlAbstract/FREE Full Text
    1. Verna, J.,
    2. Lodder, A.,
    3. Lee, K.,
    4. Vagts, A. and
    5. Ballester, R.
    (1997). A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. USA 94, 13804–13809
    OpenUrlAbstract/FREE Full Text
    1. Vojtek, A.,
    2. Haarer, B.,
    3. Field, J.,
    4. Gerst, J.,
    5. Pollard, T.,
    6. Brown, S. and
    7. Wigler, M.
    (1991). Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell 66, 497–505
    OpenUrlCrossRefPubMedWeb of Science
    1. Waddle, J.,
    2. Karpova, T.,
    3. Waterston, R. and
    4. Cooper, J.
    (1996). Movement of cortical actin patches in yeast. J. Cell Biol 132, 861–870
    OpenUrlAbstract/FREE Full Text
    1. Walch-Solimena, C.,
    2. Collins, R. and
    3. Novick, P.
    (1997). Sec2p mediatesnucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol 137, 1495–1509
    OpenUrlAbstract/FREE Full Text
    1. Wang, T. and
    2. Bretscher, A.
    (1997). Mutations synthetically lethal with tpm1 lie in genes involved in morphogenesis. Genetics 147, 1595–1607
    OpenUrlAbstract/FREE Full Text
    1. Wendland, B.,
    2. McCaffery, J. M.,
    3. Xiao, Q. and
    4. Emr, S.
    (1996). A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J. Cell Biol 135, 1485–1500
    OpenUrlAbstract/FREE Full Text
    1. Wendland, B. and
    2. Emr, S.
    (1998). Pan1, yeast esp15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J. Cell Biol 141, 71–84
    OpenUrlAbstract/FREE Full Text
    1. Wendland, B.,
    2. Emr, S. and
    3. Riezman, H.
    (1998). Protein traffic in the yeast endocytic and vacuolar protein sorting pathways. Curr. Opin. Cell Biol 10, 513–522
    OpenUrlCrossRefPubMedWeb of Science
    1. Wendland, B.,
    2. Steece, K. and
    3. Emr, S.
    (1999). Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18, 4383–4393
    OpenUrlAbstract
    1. Wesp, A.,
    2. Hicke, L.,
    3. Palecek, J.,
    4. Lombardi, R.,
    5. Aust, T.,
    6. Munn, A. and
    7. Riezman, H.
    (1997). End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 8, 2291–2306
    OpenUrlAbstract/FREE Full Text
    1. Winter, D.,
    2. Podtelejnikov, A.,
    3. Mann, M. and
    4. Li, R.
    (1997). The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol 7, 519–529
    OpenUrlCrossRefPubMedWeb of Science
    1. Winter, D.,
    2. Choe, E. and
    3. Li, R.
    (1999). Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc. Nat. Acad. Sci. USA 96, 7288–7293
    OpenUrlAbstract/FREE Full Text
    1. Winter, D.,
    2. Lechler, T. and
    3. Li, R.
    (1999). Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr. Biol 9, 501–504
    OpenUrlCrossRefPubMedWeb of Science
    1. Wolenski, J.,
    2. Cheney, R.,
    3. Mooseker, M. and
    4. Forscher, P.
    (1995). In vitro motility of immunoadsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay. J. Cell Sci 118, 1489–1496
    OpenUrl
    1. Wu, C.,
    2. Lytvyn, V.,
    3. Thomas, D. and
    4. Leberer, E.
    (1997). The phosphorylationsite for Ste20p-like protein kinases is essential for the function of myosin-I in yeast. J. Biol. Chem 272, 30623–30626
    OpenUrlAbstract/FREE Full Text
    1. Yamochi, W.,
    2. Tanaka, K.,
    3. Nonaka, H.,
    4. Maeda, A.,
    5. Musha, T. and
    6. Takai, Y.
    (1994). Growth site localization of Rho1p small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell Biol 125, 1077–1093
    OpenUrlAbstract/FREE Full Text
    1. Yang, S.,
    2. Ayscough, K. and
    3. Drubin, D.
    (1997). A role for the actin cytoskeleton of Saccharomyces cerevisiae in bipolar bud-site selection. J. Cell Biol 136, 111–123
    OpenUrlAbstract/FREE Full Text
    1. Yang, H. C.,
    2. Palazzo, A.,
    3. Swayne, T. and
    4. Pon, L.
    (1999). A retention mechanism for distribution of mitochondria during cell division in budding yeast. Curr. Biol 9, 1111–1114
    OpenUrlCrossRefPubMedWeb of Science
    1. Yang, S.,
    2. Cope, M. J. and
    3. Drubin, D.
    (1999). Sla2p is associated with the yeast cortical actin cytoskeleton via redundant localization signals. Mol. Biol. Cell 10, 2265–2283
    OpenUrlAbstract/FREE Full Text
    1. Zeng, G. and
    2. Cai, M.
    (1999). Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J. Cell Biol 144, 71–82
    OpenUrlAbstract/FREE Full Text
    1. Ziman, M.,
    2. Preuss, D.,
    3. Mulholland, J.,
    4. O'Brien, J.,
    5. Botstein, D. and
    6. Johnson, D.
    (1993). Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell 4, 1307–1316
    OpenUrlAbstract/FREE Full Text
    1. Ziman, M.,
    2. Chuang, J. and
    3. Schekman, R.
    (1996). Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol. Biol. Cell 7, 1909–1919
    OpenUrlAbstract/FREE Full Text
    1. Zoladek, T.,
    2. Vaduva, G.,
    3. Hunter, L.,
    4. Boguta, M.,
    5. Go, B.,
    6. Martin, N. and
    7. Hopper, A.
    (1995). Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3ends and/or protein synthesis in mitochondrial delivery. Mol. Cell. Biol 12, 6884–6894
    OpenUrl
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Polarization of cell growth in yeast
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Polarization of cell growth in yeast
D. Pruyne, A. Bretscher
Journal of Cell Science 2000 113: 571-585;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Polarization of cell growth in yeast
D. Pruyne, A. Bretscher
Journal of Cell Science 2000 113: 571-585;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae
  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992