Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
ERGIC-53 and traffic in the secretory pathway
H.P. Hauri, F. Kappeler, H. Andersson, C. Appenzeller
Journal of Cell Science 2000 113: 587-596;
H.P. Hauri
Department of Pharmacology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. Hans-Peter.Hauri@unibas.ch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Hans-Peter.Hauri@unibas.ch
F. Kappeler
Department of Pharmacology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. Hans-Peter.Hauri@unibas.ch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Hans-Peter.Hauri@unibas.ch
H. Andersson
Department of Pharmacology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. Hans-Peter.Hauri@unibas.ch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Hans-Peter.Hauri@unibas.ch
C. Appenzeller
Department of Pharmacology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. Hans-Peter.Hauri@unibas.ch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Hans-Peter.Hauri@unibas.ch
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The ER-Golgi intermediate compartment (ERGIC) marker ERGIC-53 is a mannose-specific membrane lectin operating as a cargo receptor for the transport of glycoproteins from the ER to the ERGIC. Lack of functional ERGIC-53 leads to a selective defect in secretion of glycoproteins in cultured cells and to hemophilia in humans. Beyond its interest as a transport receptor, ERGIC-53 is an attractive probe for studying numerous aspects of protein trafficking in the secretory pathway, including traffic routes, mechanisms of anterograde and retrograde traffic, retention of proteins in the ER, and the function of the ERGIC. Understanding these fundamental processes of cell biology will be crucial for the elucidation and treatment of many inherited and acquired diseases, such as cystic fibrosis, Alzheimer's disease and viral infections.

  • © 2000 by Company of Biologists

REFERENCES

    1. Alcalde, J.,
    2. Egea, G. and
    3. Sandoval, I. V.
    (1994). gp74 a membrane glycoprotein of the cis-Golgi network that cycles through the endoplasmic reticulum and intermediate compartment. J. Cell Biol 124, 649–665
    OpenUrlAbstract/FREE Full Text
    1. Allan, B. B. and
    2. Balch, W. E.
    (1999). Protein sorting by directed maturation of Golgi compartments. Science 285, 63–66
    OpenUrlAbstract/FREE Full Text
    1. Andersson, H.,
    2. Kappeler, F. and
    3. Hauri, H.-P.
    ) (1999). Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval. J. Biol. Chem 274, 15080–15084
    OpenUrlAbstract/FREE Full Text
    1. Annaert, W. G.,
    2. Levesque, L.,
    3. Craessaerts, K.,
    4. Dierinck, I.,
    5. Snellings, G.,
    6. Westerway, D.,
    7. St. George-Hyslop, P.,
    8. Cordell, B.,
    9. Fraser, P. and
    10. De Strooper, B.
    (1999). Presenilin 1 controls-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons. J. Cell Biol 147, 277–294
    OpenUrlAbstract/FREE Full Text
    1. Arar, C.,
    2. Carpentier, V.,
    3. Le Caer, J. P.,
    4. Monsigny, M.,
    5. Legrand, A. and
    6. Roche, A. C.
    (1995). ERGIC-53, a membrane protein of the endoplasmic reticulum-Golgi intermediate compartment, is identical to MR60, an intracellular mannose-specific lectin of myelomonocytic cells. J. Biol. Chem 270, 3551–3553
    OpenUrlAbstract/FREE Full Text
    1. Aridor, M.,
    2. Bannykh, S. I.,
    3. Rowe, T. and
    4. Balch, W. E.
    (1995). Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol 131, 875–893
    OpenUrlAbstract/FREE Full Text
    1. Bannykh, S. I.,
    2. Rowe, T. and
    3. Balch, W. E.
    (1996). The organization of endoplasmic reticulum export complexes. J. Cell Biol 135, 19–35
    OpenUrlAbstract/FREE Full Text
    1. Blum, R.,
    2. Pfeiffer, F.,
    3. Feick, P.,
    4. Nastainczyk, W.,
    5. Kohler, B.,
    6. Schafer, K.H. and
    7. Schulz, I.
    (1999). Intracellular localization and in vivo trafficking of p24A and p23. J. Cell Sci 112, 537–548
    OpenUrlAbstract/FREE Full Text
    1. Bonfanti., L.,
    2. Mironov, A. A. Jr..,
    3. Martinez-Menarguez, J. A.,
    4. Martella, O.,
    5. Fusella, A.,
    6. Baldassarre, M.,
    7. Buccione, R.,
    8. Geuze, H. J.,
    9. Mironov, A. A. and
    10. Luini, A.
    (1998). Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993–1003
    OpenUrlCrossRefPubMedWeb of Science
    1. Bremser, M.,
    2. Nickel, W.,
    3. Schweikert, M.,
    4. Ravazzola, M.,
    5. Amherdt, M.,
    6. Hughes, C. A.,
    7. Söllner, T. H.,
    8. Rothman, J. E. and
    9. Wieland, F. T.
    (1999). Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506
    OpenUrlCrossRefPubMedWeb of Science
    1. Chavrier, P.,
    2. Parton, R. G.,
    3. Hauri, H. P.,
    4. Simons, K. and
    5. Zerial, M.
    (1990). Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62, 317–329
    OpenUrlCrossRefPubMedWeb of Science
    1. Cole, N. B.,
    2. Sciaky, N.,
    3. Marotta, A.,
    4. Song, J. and
    5. Lippincott-Schwartz, J.
    (1996). Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650
    OpenUrlAbstract/FREE Full Text
    1. Cosson, P. and
    2. Letourneur, F.
    (1994). Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263, 1629–1631
    OpenUrlAbstract/FREE Full Text
    1. Culvenor, J. G.,
    2. Maher, F.,
    3. Evin, G.,
    4. Malchiodi-Albedi, F.,
    5. Cappai, R.,
    6. Underwood, J. R.,
    7. Davis, J. B.,
    8. Karran, E. H.,
    9. Roberts, G. W.,
    10. Beyreuther, K. and
    11. Masters, C. L.
    (1997). Alzheimer's disease-associated presenilin 1 in neuronal cells: evidence for localization to the endoplasmic reticulum-Golgi intermediate compartment. J. Neurosci. Res 49, 719–731
    OpenUrlCrossRefPubMedWeb of Science
    1. Dahms, N. M.,
    2. Lobel, P. and
    3. Kornfeld, S.
    (1989). Mannose 6-phosphate receptors and lysosomal enzyme targeting. J. Biol. Chem 264, 12115–12118
    OpenUrlFREE Full Text
    1. Dominguez, M.,
    2. Dejgaard, K.,
    3. Fullekrug, J.,
    4. Dahan, S.,
    5. Fazel, A.,
    6. Paccaud, J. P.,
    7. Thomas, D. Y.,
    8. Bergeron, J. J. and
    9. Nilsson, T.
    (1998). gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J. Cell Biol 140, 751–765
    OpenUrlAbstract/FREE Full Text
    1. Farmaki, T.,
    2. Ponnambalan, S.,
    3. Prescott, A. R.,
    4. Clausen, H.,
    5. Tang, B.-L.,
    6. Hong, W. and
    7. Lucocq, J.
    (1999). Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures. J. Cell Sci 112, 589–600
    OpenUrlAbstract/FREE Full Text
    1. Fiedler, K. and
    2. Simons, K.
    (1994). A putative novel class of animal lectins in the secretory pathway homologous to leguminous lectins. Cell 77, 625–626
    OpenUrlCrossRefPubMedWeb of Science
    1. Fiedler, K.,
    2. Parton, R. G.,
    3. Kellner, R.,
    4. Etzold, R. and
    5. Simons, K.
    (1994). VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J 13, 1729–1740
    OpenUrlPubMedWeb of Science
    1. Fiedler, K. and
    2. Simons, K.
    (1995). The role of N-glycans in the secretory pathway. Cell 81, 309–312
    OpenUrlCrossRefPubMedWeb of Science
    1. Fiedler, K. and
    2. Simons, K.
    (1996). Characterization of VIP36, an animal lectin homologous to leguminous lectins. J. Cell Sci 109, 271–276
    OpenUrlAbstract/FREE Full Text
    1. Fujiwara, T.,
    2. Misumi, Y. and
    3. Ikehara, Y.
    (1998). Dynamic recycling of ERGIC-53 between the endoplasmic reticulum and the Golgi complex is disrupted by nordihydroguaiaretic acid. Biochem. Biophys. Res. Commun 253, 869–876
    OpenUrlCrossRefPubMed
    1. Fullekrug, J.,
    2. Scheiffele, P. and
    3. Simons, K.
    (1999). VIP36 localisation to the early secretory pathway. J. Cell Sci 112, 2813–2821
    OpenUrlAbstract/FREE Full Text
    1. Fullekrug, J.,
    2. Suganuma, T.,
    3. Tang, B. L.,
    4. Hong, W.,
    5. Storrie, B. and
    6. Nilsson, T.
    (1999). Localization and recycling of gp27 (hp243): complex formation with other p24 family members. Mol. Biol. Cell 10, 1939–1955
    OpenUrlAbstract/FREE Full Text
    1. Gilbert, A.,
    2. Jadot, M.,
    3. Leontieva, E.,
    4. Wattiaux-De Conick, S. and
    5. Wattiaux, R.
    (1998). Delta F508 CFTR localizes in the endoplasmic reticulum-Golgi intermediate compartment in cystic fibrosis cells. Exp. Cell Res 10, 144–152
    OpenUrl
    1. Gimeno, R. E.,
    2. Espenshade, P. and
    3. Kaiser, C. A.
    (1995). SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. J. Cell Biol 131, 325–338
    OpenUrlAbstract/FREE Full Text
    1. Glick, B. S. and
    2. Malhotra, V.
    (1998). The curious status of the Golgi apparatus. Cell 95, 883–889
    OpenUrlCrossRefPubMedWeb of Science
    1. Gommel, D.,
    2. Orci, L.,
    3. Emig, E. M.,
    4. Hannah, M. J.,
    5. Ravazzola, M.,
    6. Nickel, W.,
    7. Helms, J. B.,
    8. Wieland, F. T. and
    9. Sohn, K.
    (1999). p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. FEBS Lett 447, 179–185
    OpenUrlCrossRefPubMedWeb of Science
    1. Greenfield, J. J. A. and
    2. High, S.
    (1999). The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment. J. Cell Sci 112, 1477–1486
    OpenUrlAbstract/FREE Full Text
    1. Gut, A.,
    2. Kappeler, F.,
    3. Hyka, N.,
    4. Balda, M. S.,
    5. Hauri, H. P. and
    6. Matter, K.
    (1998). Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins. EMBO J 17, 1919–1929
    OpenUrlAbstract
    1. Hara-Kuge, S.,
    2. Ohkura, T.,
    3. Seko, A. and
    4. Yamashita, K.
    (1999). Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing1-2 mannosyl residues in MDCK cells. Glycobiology 9, 833–839
    OpenUrlAbstract/FREE Full Text
    1. Hauri, H.-P. and
    2. Schweizer, A.
    (1992). The endoplasmic reticulum—Golgi intermediate compartment. Curr. Opin. Cell Biol 4, 600–608
    OpenUrlCrossRefPubMed
    1. Hendricks, L. C.,
    2. Gabel, C. A.,
    3. Suh, K. and
    4. Farquhar, M. G.
    (1991). A 58-kDa resident protein of the cis Golgi cisterna is not terminally glycosylated. J. Biol. Chem 266, 17559–17565
    OpenUrlAbstract/FREE Full Text
    1. Hong, W.
    (1998). Protein transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Sci 111, 2831–2839
    OpenUrlAbstract/FREE Full Text
    1. Itin, C.,
    2. Schindler, R. and
    3. Hauri, H. P.
    (1995). Targeting of protein ERGIC-53 to the ER/ERGIC/cis-Golgi recycling pathway. J. Cell Biol 131, 57–67
    OpenUrlAbstract/FREE Full Text
    1. Itin, C.,
    2. Kappeler, F.,
    3. Linstedt, A. D. and
    4. Hauri, H. P.
    (1995). A novel endocytosis signal related to the KKXX ER-retrieval signal. EMBO J 14, 2250–2256
    OpenUrlPubMedWeb of Science
    1. Itin, C.,
    2. Foguet, M.,
    3. Kappeler, F.,
    4. Klumperman, J. and
    5. Hauri, H. P.
    (1995). Recycling of the endoplasmic reticulum/Golgi intermediate compartment protein ERGIC-53 in the secretory pathway. Biochem. Soc. Trans 23, 541–544
    OpenUrlFREE Full Text
    1. Itin, C.,
    2. Roche, A. C.,
    3. Monsigny, M. and
    4. Hauri, H. P.
    (1996). ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol. Biol. Cell 7, 483–293
    OpenUrlAbstract/FREE Full Text
    1. Jackson, M. R.,
    2. Nilsson, T. and
    3. Peterson, P. A.
    (1990). Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9, 3153–3162
    OpenUrlPubMedWeb of Science
    1. Jackson, M. R.,
    2. Nilsson, T. and
    3. Peterson, P. A.
    (1993). Retrieval of transmembrane proteins to the endoplasmic reticulum. J. Cell Biol 121, 317–333
    OpenUrlAbstract/FREE Full Text
    1. Jakob, C. A.,
    2. Burda, P.,
    3. Roth, J. and
    4. Aebi, M.
    (1998). Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J. Cell Biol 142, 1223–1233
    OpenUrlAbstract/FREE Full Text
    1. Jantti, J.,
    2. Hilden, P.,
    3. Ronka, H.,
    4. Makiranta, V.,
    5. Keranen, S. and
    6. Kuismanen, E.
    (1997). Immunocytochemical analysis of Uukuniemi virus budding compartments: role of the intermediate compartment and the Golgi stack in virus maturation. J. Virol 71, 1162–1172
    OpenUrlAbstract/FREE Full Text
    1. Jesch, S. A. and
    2. Linstedt, A. D.
    (1998). The Golgi and endoplasmic reticulum remain independent during mitosis in HeLa cells. Mol. Biol. Cell 9, 623–635
    OpenUrlAbstract/FREE Full Text
    1. Kappeler, F.,
    2. Itin, C.,
    3. Schindler, R. and
    4. Hauri, H. P.
    (1994). A dual role for COOH-terminal lysine residues in pre-Golgi retention and endocytosis of ERGIC-53. J. Biol. Chem 269, 6279–6281
    OpenUrlAbstract/FREE Full Text
    1. Kappeler, F.,
    2. Klopfenstein, D. R.,
    3. Foguet, M.,
    4. Paccaud, J.-P. and
    5. Hauri, H.-P.
    ) (1997). The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COP II. J. Biol. Chem 272, 31801–31808
    OpenUrlAbstract/FREE Full Text
    1. Keller, P. and
    2. Simons, K.
    (1997). Post-Golgi biosynthetic trafficking. J. Cell Sci 110, 3001–3009
    OpenUrlAbstract/FREE Full Text
    1. Klumperman, J.,
    2. Schweizer, A.,
    3. Clausen, H.,
    4. Tang, B. L.,
    5. Hong, W.,
    6. Oorschot, V. and
    7. Hauri, H.-P.
    ) (1998). The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J. Cell Sci 11, 3411–3425
    OpenUrl
    1. Kuehn, M. J. and
    2. Schekman, R.
    (1997). COPII and secretory cargo capture into transport vesicles. Curr. Opin. Cell Biol 9, 477–483
    OpenUrlCrossRefPubMedWeb of Science
    1. Lah, J. J.,
    2. Heilman, C. J.,
    3. Nash, N. R.,
    4. Rees, H. D.,
    5. Yi, H.,
    6. Counts, S. E. and
    7. Levey, A. I.
    (1997). Light and electron microscopic localization of presenilin-1 in primate brain. J. Neurosci 17, 1971–1980
    OpenUrlAbstract/FREE Full Text
    1. Lahtinen, U.,
    2. Dahllof, B. and
    3. Saraste, J.
    (1992). Characterization of a 58 kDa cis-Golgi protein in pancreatic exocrine cells. J. Cell Sci 103, 321–333
    OpenUrlAbstract/FREE Full Text
    1. Lahtinen, U.,
    2. Hellman, U.,
    3. Wenstedt, C.,
    4. Saraste, J. and
    5. Pettersson, R. F.
    (1996). Molecular cloning and expression of a 58-kDa cis-Golgi and intermediate compartment protein. J. Biol. Chem 271, 4031–4037
    OpenUrlAbstract/FREE Full Text
    1. Lahtinen, U.,
    2. Svensson, K. and
    3. Pettersson, R. F.
    (1999). Mapping of structural determinants for the oligomerization of p58, a lectin-like protein of the intermediate compartment and cis-Golgi. Eur. J. Biochem 260, 392–397
    OpenUrlPubMedWeb of Science
    1. Lee, T. H. and
    2. Linstedt, A. D.
    (1999). Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. Mol. Biol. Cell 10, 1445–1462
    OpenUrlAbstract/FREE Full Text
    1. Letourneur, F.,
    2. Gaynor, E. C.,
    3. Hennecke, S.,
    4. Demolliere, C.,
    5. Duden, R.,
    6. Emr, S. D.,
    7. Riezman, H. and
    8. Cosson, P. l
    ) (1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199–1207
    OpenUrlCrossRefPubMedWeb of Science
    1. Lippincott-Schwartz, J.,
    2. Donaldson, J. G.,
    3. Schweizer, A.,
    4. Berger, E. G.,
    5. Hauri, H. P.,
    6. Yuan, L. C. and
    7. Klausner, R. D.
    (1990). Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60, 821–836
    OpenUrlCrossRefPubMedWeb of Science
    1. Lippincott-Schwartz, J.,
    2. Cole, N. B.,
    3. Marotta, A.,
    4. Conrad, P. A. and
    5. Bloom, G. S.
    (1995). Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. Cell Biol 128, 293–306
    OpenUrlAbstract/FREE Full Text
    1. Liu, Y.,
    2. Choudhury, P.,
    3. Cabral, C. B. and
    4. Sifers, N.
    (1999). Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J. Biol. Chem 274, 5861–5867
    OpenUrlAbstract/FREE Full Text
    1. Lodish, H. F.
    (1988). Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. A rate-limiting step in protein maturation and secretion. J. Biol. Chem 263, 2107–2110
    OpenUrlFREE Full Text
    1. Mackenzie, J. M.,
    2. Jones, M. K. and
    3. Westaway, E. G.
    (1999). Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J. Virol 73, 9555–9567
    OpenUrlAbstract/FREE Full Text
    1. Martinez-Menarguez, J. A.,
    2. Geuze, H.,
    3. Slot, J. W. and
    4. Klumperman, J.
    (1999). Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98, 81–90
    OpenUrlCrossRefPubMedWeb of Science
    1. Matter, K. and
    2. Mellman, I.
    (1994). Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr. Opin. Cell Biol 6, 545–554
    OpenUrlCrossRefPubMedWeb of Science
    1. Moussalli, M.,
    2. Pipe, S. W.,
    3. Hauri, H. P.,
    4. Nichols, W. C.,
    5. Ginsburg., D. and
    6. Kaufman, R. J.
    (1999). Mannose-dependent ERGIC-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J. Biol. Chem 274, 32539–32542
    OpenUrlAbstract/FREE Full Text
    1. Neerman-Arbez, M.,
    2. Johnson, K. M.,
    3. Morris, M. A.,
    4. McVey, J. H.,
    5. Peyvandi, F.,
    6. Nichols, W. C.,
    7. Ginsburg, D.,
    8. Rossier, C.,
    9. Antonarakis, S. E. and
    10. Tuddenham, E. G. D.
    (1999). Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V-factor VIII deficiency. Blood 93, 2253–2260
    OpenUrlAbstract/FREE Full Text
    1. Nguyen, V. P. and
    2. Hogue, B. G.
    (1997). Protein interactions during coronavirus assembly. J. Virol 71, 278–284
    OpenUrl
    1. Nichols, W. C.,
    2. Seligson, U.,
    3. Zivelin, A.,
    4. Terry, V. H.,
    5. Hertel, C. E.,
    6. Wheatley, M. A.,
    7. Moussalli, M. J.,
    8. Hauri, H.-P.,
    9. Ciavarella, N.,
    10. Kaufman, R. J. and
    11. Ginsburg, D.
    (1998). Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70
    OpenUrlCrossRefPubMedWeb of Science
    1. Nichols, W. C.,
    2. Terry, V. H.,
    3. Wheatley, M. T.,
    4. Yang, A.,
    5. Zivelin, A.,
    6. Ciavarella, N.,
    7. Stefanile, C.,
    8. Matsushita, T.,
    9. Saito, H.,
    10. de Bosch, N. B.,
    11. et al.
    (1999). ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families. Blood 93, 2261–2266
    OpenUrlAbstract/FREE Full Text
    1. Nishimura, N. and
    2. Balch, W. E.
    (1997). A di-acid signal required for selective export from the endoplasmic reticulum. Science 277, 556–558
    OpenUrlAbstract/FREE Full Text
    1. Ouwendijk, J.,
    2. Moolenaar, C. E.,
    3. Peters, W. J.,
    4. Hollenberg, C. P.,
    5. Ginsel, L. A.,
    6. Fransen, J. A. and
    7. Naim, H. Y.
    (1996). Congenital sucrase-isomaltase deficiency. Identification of a glutamine to proline substitution that leads to a transport block of sucrase-isomaltase in a pre-Golgi compartment. J. Clin.Invest 97, 633–641
    OpenUrlCrossRefPubMed
    1. Pagano, A.,
    2. Letourneur, F.,
    3. Garcia-Estefania, D.,
    4. Carpentier, J. L.,
    5. Orci, L. and
    6. Paccaud, J. P.
    (1999). Sec24 proteins and sorting at the endoplasmic reticulum. J. Biol. Chem 274, 7833–7840
    OpenUrlAbstract/FREE Full Text
    1. Palokangas, H.,
    2. Ying, M.,
    3. Väänänen, K. and
    4. Saraste, J.
    (1999). Retrogradetransport from the pre-Golgi intermediate compartment and the Golgi complex is affected by the vacuolar H+-ATPase inhibitor bafilomycin A1. Mol. Biol. Cell 8, 3561–3578
    OpenUrl
    1. Pepperkok, R.,
    2. Scheel, J.,
    3. Horstmann, H.,
    4. Hauri, H. P.,
    5. Griffiths, G. and
    6. Kreis, T. E.
    (1993). Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82
    OpenUrlCrossRefPubMedWeb of Science
    1. Pimpaneau, V.,
    2. Midoux, P.,
    3. Monsigny, M. and
    4. Roche, A. C.
    (1991). Characterization and isolation of an intracellular D-mannose-specific receptor from human promyelocytic HL60 cells. Carbohydrate Res 213, 95–108
    OpenUrlCrossRefPubMedWeb of Science
    1. Presley, J. F.,
    2. Cole, N. B.,
    3. Schroer, T. A.,
    4. Hirschberg, K.,
    5. Zaal, K. J. and
    6. Lippincott-Schwartz, J.
    (1997). ER-to-Golgi transport visualized in living cells. Nature 389, 81–85
    OpenUrlCrossRefPubMedWeb of Science
    1. Presley, J. F.,
    2. Smith, C.,
    3. Hirschberg, K.,
    4. Miller, C.,
    5. Cole, N. B.,
    6. Zaal, K. J. M. and
    7. Lippincott-Schwartz
    (1998). Golgi membrane dynamics. Mol. Biol. Cell 9, 1617–1626
    OpenUrlFREE Full Text
    1. Pryde, J.,
    2. Farmaki, T. and
    3. Lucocq, J. M.
    (1998). Okadaic acid induces selective arrest of protein transport in the rough endoplasmic reticulum and prevents export into COPII-coated structures. Mol. Cell Biol 18, 1125–1135
    OpenUrlAbstract/FREE Full Text
    1. Roberg, K. J.,
    2. Crotwell, M.,
    3. Espenshade, P.,
    4. Gimeno, R. and
    5. Kaiser, C. A.
    (1999). LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J. Cell Biol 145, 659–672
    OpenUrlAbstract/FREE Full Text
    1. Salanueva, I. J.,
    2. Carrascosa, J. L. and
    3. Risco, C.
    (1999). Structural maturation of the transmissible gastroenteritis coronavirus. J. Virol 73, 7952–7964
    OpenUrlAbstract/FREE Full Text
    1. Salmons, T.,
    2. Kuhn, A.,
    3. Wylie, F.,
    4. Schleich, S.,
    5. Rodriguez, J. R.,
    6. Rodriguez, D.,
    7. Esteban, M.,
    8. Griffiths, G. and
    9. Locker, J. K.
    (1997). Vaccinia virus membrane proteins p8 and p16 are cotranslationally inserted into the rough endoplasmic reticulum and retained in the intermediate compartment. J. Virol 71, 7404–7420
    OpenUrlAbstract/FREE Full Text
    1. Sandoval, I. V. and
    2. Carrasco, L.
    (1997). Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179. J. Virol 71, 4679–4693
    OpenUrlAbstract/FREE Full Text
    1. Santamaria, I.,
    2. Velasco, G.,
    3. Pedas, A. M.,
    4. Fueyo, A. and
    5. Lopez-Otin, C.
    (1998). Cathepsin Z, a novel human cysteine proteinase with a short propeptide domain and a unique chromosomal location. J. Biol. Chem 273, 16816–16823
    OpenUrlAbstract/FREE Full Text
    1. Saraste, J.,
    2. Palade, G. E. and
    3. Farquhar, M. G.
    (1987). Antibodies to rat pancreas Golgi subfractions: identification of a 58-kDa cis-Golgi protein. J. Cell Biol 105, 2021–2029
    OpenUrlAbstract/FREE Full Text
    1. Saraste, J. and
    2. Svensson, K.
    (1991). Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci 100, 415–430
    OpenUrlAbstract/FREE Full Text
    1. Saraste, J. and
    2. Kuismanen, E.
    (1992). Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin. Cell Biol 3, 343–355
    OpenUrlCrossRefPubMed
    1. Scales, S. J.,
    2. Pepperkok, R. and
    3. Kreis, T. E.
    (1997). Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148
    OpenUrlCrossRefPubMedWeb of Science
    1. Scheiffele, P.,
    2. Peranen, J. and
    3. Simons, K.
    (1995). N-glycans as apical sorting signals in epithelial cells. Nature 378, 96–98
    OpenUrlCrossRefPubMedWeb of Science
    1. Schimmöller, F.,
    2. Singer-Kruger, B.,
    3. Schröder, S.,
    4. Kruger, U.,
    5. Barlowe, C. and
    6. Riezman, H.
    (1995). The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J 14, 1329–1339
    OpenUrlPubMedWeb of Science
    1. Schindler, R.,
    2. Itin, C.,
    3. Zerial, M.,
    4. Lottspeich, F. and
    5. Hauri, H. P.
    (1993). ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment, carries an ER retention motif. Eur. J. Cell Biol 61, 1–9
    OpenUrlPubMedWeb of Science
    1. Schröder, S.,
    2. Schimmöller, F.,
    3. Singer-Kruger, B. and
    4. Riezman, H.
    (1995). The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP. J. Cell Biol 131, 895–912
    OpenUrlAbstract/FREE Full Text
    1. Schweizer, A.,
    2. Fransen, J. A.,
    3. Bächi, T.,
    4. Ginsel, L. and
    5. Hauri, H. P.
    (1988). Identification, by a monoclonal antibody, of a 53-kDa protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol 107, 1643–1653
    OpenUrlAbstract/FREE Full Text
    1. Schweizer, A.,
    2. Fransen, J. A.,
    3. Matter, K.,
    4. Kreis, T. E.,
    5. Ginsel, L. and
    6. Hauri., H. P.
    (1990). Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur. J. Cell Biol 53, 85–96
    OpenUrl
    1. Schweizer, A.,
    2. Matter, K.,
    3. Ketcham, C. M. and
    4. Hauri, H. P.
    (1991). The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi. J. Cell Biol 113, 45–54
    OpenUrlAbstract/FREE Full Text
    1. Schweizer, A.,
    2. Clausen, H.,
    3. van Meer, G. and
    4. Hauri, H. P.
    (1994). Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment. J. Biol. Chem 269, 4035–4041
    OpenUrlAbstract/FREE Full Text
    1. Shima, D. T.,
    2. Cabrera-Poch, N.,
    3. Pepperkok, R. and
    4. Warren, G.
    (1998). An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol 141, 955–966
    OpenUrlAbstract/FREE Full Text
    1. Shima, D. T.,
    2. Scales, S. J.,
    3. Kreis, T. E. and
    4. Pepperkok, R.
    (1999). Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes. Curr. Biol 9, 821–824
    OpenUrlCrossRefPubMedWeb of Science
    1. Simons, K. and
    2. Ikonen, E.
    (1997). Functional rafts in cell membranes. Nature 387, 569–572
    OpenUrlCrossRefPubMedWeb of Science
    1. Skovronsky, D. M.,
    2. Doms, R. W. and
    3. Lee, V. M.
    (1998). Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J. Cell Biol 141, 1031–1039
    OpenUrlAbstract/FREE Full Text
    1. Sodeik, B.,
    2. Doms, R. W.,
    3. Ericsson, M.,
    4. Hiller, G.,
    5. Machamer, C. E.,
    6. van't Hof, W.,
    7. van Meer, G.,
    8. Moss, B. and
    9. Griffiths, G.
    (1993). Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J. Cell Biol 121, 521–541
    OpenUrlAbstract/FREE Full Text
    1. Stamnes, M. A.,
    2. Craighead, M. W.,
    3. Hoe, M. H.,
    4. Lampen, N.,
    5. Geromanos, S.,
    6. Tempst, P. and
    7. Rothman, J. E.
    (1995). An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc. Nat. Acad. Sci. USA 92, 8011–8015
    OpenUrlAbstract/FREE Full Text
    1. Storrie, B.,
    2. White, J.,
    3. Rottger, S.,
    4. Stelzer, E. H.,
    5. Suganuma, T. and
    6. Nilsson, T.
    (1998). Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol 143, 1505–1521
    OpenUrlAbstract/FREE Full Text
    1. Tang, B. L.,
    2. Low, S. H.,
    3. Hauri, H.-P. and
    4. Hong, W.
    (1995). Segregation of ERGIC53 and the mammalian KDEL receptor upon exit from the 15degC compartment. Eur. J. Cell Biol 68, 398–410
    OpenUrlPubMed
    1. Tang, B. L.,
    2. Low, S. H. and
    3. Hong, W.
    (1995). Differential response of resident proteins and cycling proteins of the Golgi to brefeldin A. Eur. J. Cell Biol 68, 199–205
    OpenUrlPubMed
    1. Tani, K.,
    2. Mizoguchi, T.,
    3. Iwamatsu, A.,
    4. Hatsuzawa, K. and
    5. Tagaya, M.
    (1999). p125 is a novel mammalian Sec23p-interacting protein with structural similarity to phospholipid-modifying proteins. J. Biol. Chem 274, 20505–20512
    OpenUrlAbstract/FREE Full Text
    1. Teasdale, R. D. and
    2. Jackson, M. R.
    (1996). Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu. Rev. Cell Dev. Biol 12, 27–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Tisdale, E. J.,
    2. Plutner, H.,
    3. Matteson, J. and
    4. Balch, W. E.
    (1997). P53/58 binds COPI and is required for selective transport through the early secretory pathway. J. Cell Biol 137, 581–593
    OpenUrlAbstract/FREE Full Text
    1. Trombetta, E. S. and
    2. Helenius, A.
    (1998). Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol 8, 587–592
    OpenUrlCrossRefPubMedWeb of Science
    1. Vollenweider, F.,
    2. Kappeler, F.,
    3. Itin, C. and
    4. Hauri, H.-P.
    ) (1998). Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme. J. Cell Biol 142, 377–389
    OpenUrlAbstract/FREE Full Text
    1. Warren, G. and
    2. Mellman, I.
    (1999). Bulk Flow Redux?. Cell 98, 125–127
    OpenUrlCrossRefPubMedWeb of Science
    1. Wieland, F. T.,
    2. Gleason, M. L.,
    3. Serafini, T. A. and
    4. Rothman, J. E.
    (1987). The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50, 289–300
    OpenUrlCrossRefPubMedWeb of Science
    1. Ziegler, H.,
    2. Thale, R.,
    3. Lucin, P.,
    4. Muranyi, W.,
    5. Flohr, T.,
    6. Hengel, H.,
    7. Farrell, H.,
    8. Rawlinson, W. and
    9. Koszinowski, U. H.
    (1997). A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6, 57–66
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
ERGIC-53 and traffic in the secretory pathway
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
Share
Journal Article
ERGIC-53 and traffic in the secretory pathway
H.P. Hauri, F. Kappeler, H. Andersson, C. Appenzeller
Journal of Cell Science 2000 113: 587-596;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
ERGIC-53 and traffic in the secretory pathway
H.P. Hauri, F. Kappeler, H. Andersson, C. Appenzeller
Journal of Cell Science 2000 113: 587-596;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase
  • Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell adhesion sites
  • Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

First Person interviews

Photo collage of Chen Yu, Sushmita Chatterjee, Ruiqi Wang and Lotte Vanheer.

Have you seen our First Person interviews with the early-career first authors of our papers? The authors talk about their work in and out of the lab, the journeys that led them to where they are now and the scientists who inspired them along the way. Recently, we caught up with first authors Maitreyi Rathod, Sushmita Chatterjee, Lotte Vanheer, Rachel Furlong, Pamela Adami, Ruiqi Wang and Chen Yu.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


preLights – Meet the preLighters: an interview with Maiko Kitaoka

Maiko Kitaoka

Maiko Kitaoka is a graduate student in the lab of Rebecca Heald at the University of California, Berkeley. Here she studies the cause of chromosome mis-segregation defects in Xenopus hybrids. We caught up with Maiko to discuss her research, science communication, ballet, preprints and more.


Journal Meeting – Cell Dynamics: Host-Pathogen Interface

Registration is now open for the third instalment of the highly successful Cellular Dynamics Meeting Series, and will focus on ‘Host-Pathogen Interface’. The meeting will take place 17-20 May 2020, and further information is available here.


Cell Science at a Glance – Adaptor protein complexes and disease at a glance

A new poster from the Robinson lab summarises what is known about the five adaptor protein complexes and discuss how this helps to explain the clinical features of different genetic disorders.


JCS joins the Review Commons initiative

Journal of Cell Science is pleased to be a part of the new and exciting Review Commons initiative, launched by EMBO and ASAPbio. Streamlining the publishing process, Review Commons enables high-quality peer review to take place before journal submission. Papers submitted to Review Commons will be assessed independently of any journal, focusing solely on the paper’s scientific rigor and merit.


Articles of interest in our sister journals

Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in Drosophila larvae
Chang-Ru Tsai, Michael J. Galko
Development

Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis
Elizabeth Vargas, Karen P. McNally, Daniel B. Cortes, Michelle T. Panzica, Brennan M. Danlasky, Qianyan Li, Amy Shaub Maddox, Francis J. McNally
Development

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Journal of Cell Science
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992