Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
The actin cytoskeleton of Dictyostelium: a story told by mutants
A.A. Noegel, M. Schleicher
Journal of Cell Science 2000 113: 759-766;
A.A. Noegel
Institut fur Biochemie I, Medizinische Fakultat, Universitat zu Koln, Joseph-Stelzmann-Str. 52, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: noegel@uni-koeln.de
M. Schleicher
Institut fur Biochemie I, Medizinische Fakultat, Universitat zu Koln, Joseph-Stelzmann-Str. 52, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: noegel@uni-koeln.de
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Actin-binding proteins are effectors of cell signalling and coordinators of cellular behaviour. Research on the Dictyostelium actin cytoskeleton has focused both on the elucidation of the function of bona fide actin-binding proteins as well as on proteins involved in signalling to the cytoskeleton. A major part of this work is concerned with the analysis of Dictyostelium mutants. The results derived from these investigations have added to our understanding of the role of the actin cytoskeleton in growth and development. Furthermore, the studies have identified several cellular and developmental stages that are particularly sensitive to an unbalanced cytoskeleton. In addition, use of GFP fusion proteins is revealing the spatial and temporal dynamics of interactions between actin-associated proteins and the cytoskeleton.

  • © 2000 by Company of Biologists

REFERENCES

    1. Adachi, H.,
    2. Takahashi, Y.,
    3. Hasebe, T.,
    4. Shirouzu, M.,
    5. Yokoyama, S. and
    6. Sutoh, K.
    (1997). Dictyostelium IQGAP-related protein specifically involved in the completion of cytokinesis. J. Cell Biol 137, 891–898
    OpenUrlAbstract/FREE Full Text
    1. Aizawa, H.,
    2. Sutoh, K. and
    3. Yahara, I.
    (1996). Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. J. Cell Biol 132, 335–344
    OpenUrlAbstract/FREE Full Text
    1. Aizawa, H.,
    2. Fukui, Y. and
    3. Yahara, I.
    (1997). Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J. Cell Sci 110, 2333–2344
    OpenUrlAbstract/FREE Full Text
    1. Alexander, S.,
    2. Sydow, L. M.,
    3. Wessels, D. and
    4. Soll, D. R.
    (1992). Discoidin proteins of Dictyostelium are necessary for normal cytoskeletal organization and cellular morphology during aggregation. Differentiation 51, 149–161
    OpenUrlCrossRefPubMedWeb of Science
    1. Bear, J. E.,
    2. Rawls, J. F. and
    3. Saxe, C. L. III.
    ) (1998). Scar, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol 142, 1325–1335
    OpenUrlAbstract/FREE Full Text
    1. Buczynski, G.,
    2. Grove, B.,
    3. Nomura, A.,
    4. Kleve, M.,
    5. Bush, J.,
    6. Firtel, R. A. and
    7. Cardelli, J.
    (1997). Inativation of two Dictyostelium discoideum genes, DdPIK1 and DdPIK2, encoding proteins related to mammalian phosphatidylinositide 3-kinases, results in defects in endocytosis, lysosome to postlysosome transport, and actin cytoskeleton organization. J. Cell Biol 136, 1271–1286
    OpenUrlAbstract/FREE Full Text
    1. Chen, P.,
    2. Ostrow, B. D.,
    3. Tafuri, S. R. and
    4. Chisholm, R. L.
    (1994). Targeted disruption of the Dictyostelium RMLC gene produces cells defective in cytokinesis and development. J. Cell Biol 127, 1933–1944
    OpenUrlAbstract/FREE Full Text
    1. Chung, C. Y. and
    2. Firtel, R. A.
    (1999). PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J. Cell Biol 147, 559–576
    OpenUrlAbstract/FREE Full Text
    1. Cox, D.,
    2. Wessels, D.,
    3. Soll, D. R.,
    4. Hartwig, J. and
    5. Condeelis, J.
    (1996). Re-expression of ABP-120 rescues cytoskeletal structure, motility, and phagocytosis defects of ABP-120- Dictyostelium mutants. Mol. Biol. Cell 5, 803–823
    OpenUrl
    1. Dai, J.,
    2. Ting-Beall, H. P.,
    3. Hochmuth, R. M.,
    4. Sheetz, M. P. and
    5. Titus, M. A.
    (1999). Myosin I contributes to the generation of resting cortical tension. Biophys. J 77, 1168–1176
    OpenUrlCrossRefPubMedWeb of Science
    1. de Hostos, E. L.,
    2. Rehfuess, C.,
    3. Bradtke, B.,
    4. Waddell, D. R.,
    5. Albrecht, R.,
    6. Murphy, J. and
    7. Gerisch, G.
    (1993). Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility. J. Cell Biol 120, 163–173
    OpenUrlAbstract/FREE Full Text
    1. De Lozanne, A. and
    2. Spudich, J. A.
    (1987). Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091
    OpenUrlAbstract/FREE Full Text
    1. Downward, J.
    (1995). A target for PI(3) kinase. Nature 376, 553–554
    OpenUrlCrossRefPubMed
    1. Eichinger, L.,
    2. Köppel, B.,
    3. Noegel, A. A.,
    4. Schleicher, M.,
    5. Schliwa, M.,
    6. Weijer, K.,
    7. Witke, W. and
    8. Janmey, P. A.
    (1996). Mechanical perturbation elicits a phenotypic difference between Dictyostelium wild-type cells and cytoskeletal mutants. Biophys. J 70, 1054–1060
    OpenUrlCrossRefPubMedWeb of Science
    1. Eichinger, L.,
    2. Bähler, M.,
    3. Dietz, M.,
    4. Eckerskorn, C. and
    5. Schleicher, M.
    (1998). Characterization and cloning of a Dictyostelium Ste20-like protein kinase that phosphorylates the actin-binding protein severin. J. Biol. Chem 273, 12952–12959
    OpenUrlAbstract/FREE Full Text
    1. Eichinger, L.,
    2. Lee, S. S. and
    3. Schleicher, M.
    (1999). Dictyostelium as model system for studies of the actin cytoskeleton by molecular genetics. Microsc. Res. Tech 47, 124–134
    OpenUrlCrossRefPubMedWeb of Science
    1. Faix, J. and
    2. Dittrich, W.
    (1996). DGAP1, a homologue of rasGTPase activating proteins that controls growth, cytokinesis, and development in Dictyostelium discoideum. FEBS Lett 394, 251–257
    OpenUrlCrossRefPubMedWeb of Science
    1. Faix, J.,
    2. Steinmetz, M.,
    3. Boves, H.,
    4. Kammerer, R. A.,
    5. Lottspeich, F.,
    6. Mintert, U.,
    7. Murphy, J.,
    8. Stock, A.,
    9. Aebi, U. and
    10. Gerisch, G.
    (1996). Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled coil tail. Cell 86, 631–642
    OpenUrlCrossRefPubMedWeb of Science
    1. Faix, J.,
    2. Clougherty, C.,
    3. Konzok, A.,
    4. Mintert, U.,
    5. Murphy, J.,
    6. Albrecht, R.,
    7. Muhlbauer, B. and
    8. Kuhlmann, J.
    (1998). The IQGAP-related protein DGAP1 interacts with Rac and is involved in the modulation of the F-actin cytoskeleton and control of cell motility. J. Cell Sci 111, 3059–3071
    OpenUrlAbstract/FREE Full Text
    1. Fey, P. and
    2. Cox, E. C.
    (1999). Cortexillin I is required for development in Polysphondylium. Dev. Biol 15, 414–424
    OpenUrl
    1. Fisher, P. R.
    (1997). Genetics of phototaxis in a model eukaryote, Dictyostelium discoideum. BioEssays 19, 397–407
    OpenUrlCrossRefPubMedWeb of Science
    1. Fisher, P. R.,
    2. Noegel, A. A.,
    3. Fechheimer, M.,
    4. Rivero, F.,
    5. Prassler, J. and
    6. Gerisch, G.
    (1997). Photosensory and thermosensory responses in Dictyostelium slugs are specifically impaired by absence of the F-actin cross-linking gelation factor (ABP-120). Curr. Biol 7, 889–892
    OpenUrlCrossRefPubMed
    1. Freeman, N. L.,
    2. Lila, T.,
    3. Mintzer, K. A.,
    4. Chen, Z.,
    5. Pahk, A. J.,
    6. Ren, R.,
    7. Drubin, D. G. and
    8. Field, J.
    (1996). A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization. Mol. Cell. Biol 16, 548–556
    OpenUrlAbstract/FREE Full Text
    1. Fukui, Y.,
    2. De Lozanne, A. and
    3. Spudich, J. A.
    (1990). Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant. J. Cell Biol 110, 367–378
    OpenUrlAbstract/FREE Full Text
    1. Gamper, M.,
    2. Howard, P. K.,
    3. Hunter, T. and
    4. Firtel, R. A.
    (1996). Multiple roles of the novel protein tyrosine phosphatase PTP3 during Dictyostelium growth and development. Mol. Cell. Biol 16, 2431–2444
    OpenUrlAbstract/FREE Full Text
    1. Gaskins, C.,
    2. Clark, A. M.,
    3. Aubry, L.,
    4. Segall, J. E. and
    5. Firtel, R. A.
    (1996). The Dictyostelium MAP kinase ERK2 regulates multiple, independent developmental pathways. Genes Dev 10, 118–128
    OpenUrlAbstract/FREE Full Text
    1. Gerald, N.,
    2. Dai, J.,
    3. Ting-Beall, H. P. and
    4. De Lozanne, A.
    (1998). A role for Dictyostelium racE in cortical tension and cleavage furrow progression. J. Cell Biol 141, 483–492
    OpenUrlAbstract/FREE Full Text
    1. Gottwald, U.,
    2. Brokamp, R.,
    3. Karakesisoglou, I.,
    4. Schleicher, M. and
    5. Noegel, A. A.
    (1996). Identification of a cyclase associated protein (CAP) homologue in D. discoideum and characterization of its interaction with actin. Mol. Biol. Cell 7, 261–272
    OpenUrlAbstract/FREE Full Text
    1. Haugwitz, M.,
    2. Noegel, A. A.,
    3. Karakesisoglou, J. and
    4. Schleicher, M.
    (1994). Dictyostelium amoebae that lack G-actin sequestering profilins show defects in F-actin content, cytokinesis and development. Cell 79, 303–314
    OpenUrlCrossRefPubMedWeb of Science
    1. Howard, P. K.,
    2. Sefton, B. M. and
    3. Firtel, R. A.
    (1992). Analysis of a spatiallyregulated phosphotyrosine phosphatase identifies tyrosine phosphorylation as a key regulatory pathway in Dictyostelium. Cell 71, 637–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Howard, P. K.,
    2. Sefton, B. M. and
    3. Firtel, R. A.
    (1993). Tyrosine phosphorylation of actin in Dictyostelium associated with cell-shape changes. Science 259, 241–244
    OpenUrlAbstract/FREE Full Text
    1. Howard, P. K.,
    2. Gamper, M.,
    3. Hunter, T. and
    4. Firtel, R. A.
    (1994). Regulation by protein-tyrosine phosphatase PTP2 is distinct from that by PTP1 during Dictyostelium growth and development. Mol. Cell. Biol 8, 5154–5164
    OpenUrl
    1. Hug, C.,
    2. Jay, P. Y.,
    3. Reddy, I.,
    4. McNally, J. G.,
    5. Bridgman, P. C.,
    6. Elson, E. L. and
    7. Cooper, J. A.
    (1995). Capping protein levels influence actin assembly and cell motility in Dictyostelium. Cell 81, 591–600
    OpenUrlCrossRefPubMedWeb of Science
    1. Insall, R. H.,
    2. Borleis, J. and
    3. Devreotes, P. N.
    (1996). The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr. Biol 6, 719–729
    OpenUrlCrossRefPubMedWeb of Science
    1. Jung, E.,
    2. Fucini, P.,
    3. Stewart, M.,
    4. Noegel, A. A. and
    5. Schleicher, M.
    (1996). Linking microfilaments to intracellular membranes: the actin-binding and vesicle associated protein comitin exhibits a mannose-specific lectin activity. EMBO J 15, 1238–1246
    OpenUrlPubMedWeb of Science
    1. Jung, G.,
    2. Wu, X. and
    3. Hammer, J. A. 3rd.
    (1996). Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J. Cell Biol 133, 305–323
    OpenUrlAbstract/FREE Full Text
    1. Kay, R.
    (1999). Taking the plunge: terminal differentiation in Dictyostelium. Trends Genet 15, 15–19
    OpenUrlCrossRefPubMedWeb of Science
    1. Karakesisoglou, I.,
    2. Janssen, K.-P.,
    3. Eichinger, L.,
    4. Noegel, A. A. and
    5. Schleicher, M.
    (1999). Identification of a suppressor of the Dictyostelium profilin-minus phenotype as a CD36/LIMPII homologue. J. Cell Biol 145, 167–181
    OpenUrlAbstract/FREE Full Text
    1. Knecht, D. A. and
    2. Loomis, W. F.
    (1987). Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236, 1081–1086
    OpenUrlAbstract/FREE Full Text
    1. Kolman, M. F.,
    2. Futey, L. M. and
    3. Egelhoff, T. T.
    (1996). Dictyostelium myosin heavy chain kinase A regulates myosin localization during growth and development. J. Cell Biol 132, 101–109
    OpenUrlAbstract/FREE Full Text
    1. Konzok, A.,
    2. Weber, I.,
    3. Simmeth, E.,
    4. Hacker, U.,
    5. Maniak, M. and
    6. Muller-Taubenberger, A.
    (1999). Daip1, a Dictyostelium homologue of the yeast actin-interacting protein 1, is involved in endocytosis, cytokinesis and motility. J. Cell Biol 146, 453–464
    OpenUrlAbstract/FREE Full Text
    1. Khosla, M.,
    2. Spiegelman, G. B. and
    3. Weeks, G.
    (1996). Overexpression of an activated rasG gene during growth blocks the initiation of Dictyostelium development. Mol. Cell. Biol 16, 4156–4162
    OpenUrlAbstract/FREE Full Text
    1. Kuwayama, H.,
    2. Ecke, M.,
    3. Gerisch, G. and
    4. Van Haastert, P. J.
    ) (1996). Protection against osmotic stress by cGMP-mediated myosin phosphorylation. Science 271, 207–209
    OpenUrlAbstract
    1. Larochelle, D. A.,
    2. Vithalani, K. and
    3. De Lozanne, A.
    (1996). A novel member of the rho family of small GTP-binding proteins is specifically required for cytokinesis. J. Cell Biol 133, 1321–1330
    OpenUrlAbstract/FREE Full Text
    1. Larochelle, D. A.,
    2. Vithalani, K. K. and
    3. De Lozanne, A.
    (1997). Role of Dictyostelium racE in cytokinesis: Mutational analysis and localization studies by use of green fluorescent protein. Mol. Biol. Cell 8, 935–944
    OpenUrlAbstract/FREE Full Text
    1. Lee, S.-F.,
    2. Egelhoff., T. T.,
    3. Mahasneh, A. and
    4. Côte, G. P.
    ) (1996). Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by cdc42 and Rac. J. Biol. Chem 271, 27044–27048
    OpenUrlAbstract/FREE Full Text
    1. Lee, S. S.,
    2. Karakesisoglou, I.,
    3. Noegel., A. A.,
    4. Rieger, D. and
    5. Schleicher, M.
    (2000). Dissection of functional domains by expression of point mutated profilins in Dictyostelium mutants. Eur. J. Cell Biol 79, 92–103
    OpenUrlCrossRefPubMedWeb of Science
    1. Lilly, P.,
    2. Wu, L.,
    3. Welker, D. L. and
    4. Devreotes, P. N.
    (1993). A G-protein beta-subunit is essential for Dictyostelium development. Genes Dev 6, 986–995
    OpenUrl
    1. Lilly, P. J. and
    2. Devreotes, P. N.
    (1995). Chemoattractant and GTPS mediated stimulation of adenylyl cyclase in Dictyostelium requires transloaction of CRAC to membranes. J. Cell Biol 129, 1659–1665
    OpenUrlAbstract/FREE Full Text
    1. Liu, T.,
    2. Williams, J. G. and
    3. Clarke, M.
    (1992). Inducible expression of calmodulin antisense RNA in Dictyostelium cells inhibits the completion of cytokinesis. Mol. Biol. Cell 12, 1403–1413
    OpenUrl
    1. Loisel, T. P.,
    2. Boujemaa, R.,
    3. Pantaloni, D. and
    4. Carlier, M.-F.
    ) (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616
    OpenUrlCrossRefPubMedWeb of Science
    1. Lundquist, E. A.,
    2. Herman, R. K.,
    3. Shaw, J. E. and
    4. Bargmann, C. I.
    (1998). UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron 21, 385–392
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma, H.,
    2. Gamper, M.,
    3. Parent, C. and
    4. Firtel, R. A.
    (1997). The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase. EMBO J 16, 4317–4332
    OpenUrlAbstract
    1. Machesky, L. M. and
    2. Cooper, J. A.
    (1999). Bare bones of the cytoskeleton. Nature 401, 542–543
    OpenUrlCrossRefPubMed
    1. Machesky, L. M. and
    2. Insall, R. H.
    (1999). Signalling to actin dynamics. J. Cell Biol 146, 267–272
    OpenUrlFREE Full Text
    1. Machesky, L. M.,
    2. Mullins, R. D.,
    3. Higgs, H. N.,
    4. Kaiser, D. A.,
    5. Blanchoin, L.,
    6. May, R. C.,
    7. Hall, M. E. and
    8. Pollard, T. D.
    (1999). Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Nat. Acad. Sci. USA 96, 3739–3744
    OpenUrlAbstract/FREE Full Text
    1. Maekawa, M.,
    2. Ishizaki, T.,
    3. Boku, S.,
    4. Watanabe, N.,
    5. Fujita, A.,
    6. Iwamatsu, A.,
    7. Obinata, T.,
    8. Ohashi, K.,
    9. Mizuno, K. and
    10. Narumiya, S.
    (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898
    OpenUrlAbstract/FREE Full Text
    1. Maniak, M.,
    2. Rauchenberger, R.,
    3. Albrecht., R.,
    4. Murphy, J. and
    5. Gerisch, G.
    (1995). Coronin involved in phagocytosis of particle-induced relocalization visualized by a green fluorescent protein tag. Cell 83, 915–924
    OpenUrlCrossRefPubMedWeb of Science
    1. Meili, R.,
    2. Ellsworth, C.,
    3. Lee, S.,
    4. Reddy, T. B. K.,
    5. Ma, H. and
    6. Firtel, R. A.
    (1999). Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18, 2092–2105
    OpenUrlAbstract
    1. Moon, A. L.,
    2. Janmey, P. A.,
    3. Louie, K. A. and
    4. Drubin, D. G.
    (1993). Cofilin is an essential component of the cortical cytoskeleton. J. Cell Biol 120, 421–435
    OpenUrlAbstract/FREE Full Text
    1. Morrissette, N. S.,
    2. Gold, E. S.,
    3. Guo, J.,
    4. Hamerman, J. A.,
    5. Ozinsky, A.,
    6. Bedian, V. and
    7. Aderem, A. A.
    (1999). Isolation and characterization of monoclonal antibodies directed against novel components of macrophage phagosomes. J. Cell Sci 112, 4705–4713
    OpenUrlAbstract/FREE Full Text
    1. Niewöhner, J.,
    2. Weber, I.,
    3. Maniak, M.,
    4. Muller-Taubenberger, A. and
    5. Gerisch, G.
    (1997). Talin-null cells of Dictyostelium are strongly defective in adhesion to particle and substrate surfaces and slightly impaired in cytokinesis. J. Cell Biol 138, 349–361
    OpenUrlAbstract/FREE Full Text
    1. Niswonger, M. L. and
    2. O'Halloran, T. J.
    (1997). A novel role for clathrin in cytokinesis. Proc. Nat. Acad. Sci. USA 94, 8575–8578
    OpenUrlAbstract/FREE Full Text
    1. Niswonger, M. L. and
    2. O'Halloran, T. J.
    (1997). Clathrin heavy chain is required for spore cell but not stalk cell differentiation in Dictyostelium discoideum. Development 124, 443–451
    OpenUrlAbstract
    1. Noegel, A. A. and
    2. Luna, E. J.
    (1995). The Dictyostelium cytoskeleton. Experientia 51, 1135–1143
    OpenUrlCrossRefPubMedWeb of Science
    1. Noegel, A. A.,
    2. Rivero, F.,
    3. Albrecht, R.,
    4. Janssen, K.-P.,
    5. Köhler, J.,
    6. Parent, C. A. and
    7. Schleicher, M.
    (1999). Assessing the role of ASP56/CAP homologue of Dictyostelium discoideum and the requirements for subcellular localization. J. Cell Sci 112, 3195–3203
    OpenUrlAbstract/FREE Full Text
    1. Novak, K. D.,
    2. Peterson, M. D.,
    3. Reedy, M. C. and
    4. Titus, M. A.
    (1995). Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J. Cell Biol 131, 1205–1221
    OpenUrlAbstract/FREE Full Text
    1. Novak, K. D. and
    2. Titus, M. A.
    (1997). Myosin I overexpression impairs cell migration. J. Cell Biol 136, 633–647
    OpenUrlAbstract/FREE Full Text
    1. O'Halloran, T. J. and
    2. Anderson, R. G.
    (1992). Clathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium. J. Cell Biol 118, 1371–1377
    OpenUrlAbstract/FREE Full Text
    1. Parent, C. A.,
    2. Blacklock, B. J.,
    3. Froehlich, W. M.,
    4. Murphy, D. B. and
    5. Devreotes, P. N.
    (1998). G protein signalling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91
    OpenUrlCrossRefPubMedWeb of Science
    1. Peracino, B.,
    2. Borleis, J.,
    3. Jin, T.,
    4. Westphal, M.,
    5. Schwartz, J.-M.,
    6. Wu, L.,
    7. Bracco, E.,
    8. Gerisch, G.,
    9. Devreotes, P. and
    10. Bozzaro, S.
    (1998). G proteinsubunit-null mutants are impaired in phagocytosis and chemotaxis due to inappropriate regulation of the actin cytoskeleton. J. Cell Biol 141, 1529–1537
    OpenUrlAbstract/FREE Full Text
    1. Pollenz, R. S.,
    2. Chen, T. L.,
    3. Trivinos-Lagos, L. and
    4. Chisholm, R. L.
    (1992). The Dictyostelium essential light chain is required for myosin function. Cell 69, 951–962
    OpenUrlCrossRefPubMed
    1. Ponte, E.,
    2. Bracco, E.,
    3. Faix, J. and
    4. Bozzaro, S.
    (1998). Detection of subtle phenotypes: the case of the cell adhesion molecule csA in Dictyostelium. Proc. Nat. Acad. Sci. USA 95, 9360–9365
    OpenUrlAbstract/FREE Full Text
    1. Prassler, J.,
    2. Murr, A.,
    3. Stocker, S.,
    4. Faix, J.,
    5. Murphy, J. and
    6. Marriot, G.
    (1998). DdLIM is a cytoskeleton-associated protein involved in the protrusion of lamellipodia in Dictyostelium. Mol. Biol. Cell 9, 545–559
    OpenUrlAbstract/FREE Full Text
    1. Rebstein, P. J.,
    2. Cardelli, J.,
    3. Weeks, G. and
    4. Spiegelman, G. B.
    (1997). Mutational analysis of the role of Rap1 in regulating cytoskeletal function in Dictyostelium. Exp. Cell Res 231, 276–283
    OpenUrlCrossRefPubMed
    1. Rivero, F.,
    2. Köppel, B.,
    3. Peracino, B.,
    4. Bozzaro, S.,
    5. Siegert, F.,
    6. Weijer, C. J.,
    7. Schleicher, M.,
    8. Albrecht, R. and
    9. Noegel, A. A.
    (1996). The corticalcytoskeleton: F-actin crosslinking proteins protect against osmotic stress and ensure cell size, cell shape and motility and contribute to phagocytosis and development. J. Cell Sci 109, 2679–2691
    OpenUrlAbstract/FREE Full Text
    1. Rivero, F.,
    2. Furukawa, R.,
    3. Noegel, A. A. and
    4. Fechheimer, M.
    (1996). Dictyostelium discoideum cells lacking the 34, 000 Dalton actin binding protein can grow, locomote and develop, but exhibit defects in regulation of cell structure and movement: A case of partial redundancy. J. Cell Biol 135, 965–980
    OpenUrlAbstract/FREE Full Text
    1. Rivero, F.,
    2. Kuspa, A.,
    3. Brokamp, R.,
    4. Matzner, M. and
    5. Noegel, A. A.
    (1998). Interaptin, an actin-binding protein of the alpha-actinin superfamily in Dictyostelium discoideum, is developmentally and cAMP-regulated and associates with intracellular membrane compartments. J. Cell Biol 142, 735–750
    OpenUrlAbstract/FREE Full Text
    1. Rivero, F.,
    2. Albrecht, A.,
    3. Dislich, H.,
    4. Bracco, E.,
    5. Graciotti, L.,
    6. Bozzaro, S. and
    7. Noegel, A. A.
    (1999). RacF1, a novel member of the Rho protein family, associates transiently with cell contact areas, macropinosomes and phagosomes. Mol. Biol. Cell 10, 1205–1219
    OpenUrlAbstract/FREE Full Text
    1. Rivero, F.,
    2. Furukawa, R.,
    3. Fechheimer, M. and
    4. Noegel, A. A.
    (1999). Three actin cross-linking proteins, the 34 kDa actin-bundling protein, alpha-actinin, and gelation factor (ABP120), have both unique and redundant roles in growth and development of Dictyostelium discoideum. J. Cell Sci 112, 2737–2751
    OpenUrlAbstract/FREE Full Text
    1. Rodal, A. A.,
    2. Tetreault, J. W.,
    3. Lappalainen, P.,
    4. Drubin, D. G. and
    5. Amberg, D. C.
    (1999). Aip1p interacts with cofilin to disassemble actin filaments. J. Cell Biol 145, 1251–1264
    OpenUrlAbstract/FREE Full Text
    1. Schleicher, M. and
    2. Noegel, A. A.
    (1992). Dynamics of the Dictyostelium cytoskeleton during chemotaxis. New Biol 4, 461–472
    OpenUrlPubMedWeb of Science
    1. Shutt, D. C.,
    2. Wessels, D.,
    3. Wagenknecht, K.,
    4. Chandrasekhar, A.,
    5. Hitt, A. L.,
    6. Luna, E. J. and
    7. Soll, D. R.
    (1995). Ponticulin plays a role in the positional stabilization of pseudopods. J. CellBiol 131, 1495–1506
    OpenUrlAbstract/FREE Full Text
    1. Seastone, D. J.,
    2. Lee, E.,
    3. Bush, J.,
    4. Knecht, D. and
    5. Cardelli, J.
    (1998). Overexpression of a novel Rho family GTPase, RacC, induces unusual actin-based structures and positively affects phagocytosis in Dictyostelium discoideum. Mol. Biol. Cell 9, 2891–2904
    OpenUrlAbstract/FREE Full Text
    1. Seastone, D. J.,
    2. Zhang, L.,
    3. Buczynski, G.,
    4. Rebstein, P.,
    5. Weeks, G.,
    6. Spiegelman, G. and
    7. Cardelli, J.
    (1999). The small Mr Ras-like GTPase Rap1 and the phospholipase C pathway act to regulate phagocytosis in Dictyostelium discoideum. Mol. Biol. Cell 10, 393–406
    OpenUrlAbstract/FREE Full Text
    1. Stocker, S.,
    2. Hiery, M. and
    3. Marriott, G.
    (1999). Phototactic migration of Dictyostelium cells is linked to a new type of gelsolin-related protein. Mol. Biol. Cell 10, 161–178
    OpenUrlAbstract/FREE Full Text
    1. Stoeckelhuber, M.,
    2. Noegel, A. A.,
    3. Eckerskorn, C.,
    4. Köhler, J.,
    5. Rieger, D. and
    6. Schleicher, M.
    (1996). Structure/function-studies on the pH-dependent actin-binding protein hisactophilin in Dictyostelium mutants. J. Cell Sci 109, 1825–1835
    OpenUrlAbstract/FREE Full Text
    1. Straub, K. L.,
    2. Stella, M. C. and
    3. Leptin, M.
    (1996). The gelsolin-related flightless I protein is required for actin distribution during cellularisation in Drosophila. J. Cell Sci 109, 263–270
    OpenUrlAbstract/FREE Full Text
    1. Titus, M. A.
    (1999). A class VII unconventional myosin is required for phagocytosis. Curr. Biol 9, 1297–1303
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsujioka, M.,
    2. Machesky, L. M.,
    3. Cole, S. L.,
    4. Yahata, K. and
    5. Inouye, K.
    (1999). A unique talin homologue with a villin headpiece-like domain is required for multicellular morphogenesis in Dictyostelium. Curr. Biol 9, 389–392
    OpenUrlCrossRefPubMedWeb of Science
    1. Tuxworth, R. I.,
    2. Cheetham, J. L.,
    3. Machesky, L. M.,
    4. Spiegelmann, G. B.,
    5. Weeks, G. and
    6. Insall, R. H.
    (1997). Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. J. Cell Biol 138, 605–614
    OpenUrlAbstract/FREE Full Text
    1. Weber, I.,
    2. Gerisch, G.,
    3. Heizer, C.,
    4. Murphy, J.,
    5. Badelt, K.,
    6. Stock, A.,
    7. Schwartz, J.-M. and
    8. Faix, J.
    (1999). Cytokinesis mediated through the recruitment of cortexillins into cleavage furrow. EMBO J 18, 586–594
    OpenUrlAbstract
    1. Weiner, O. H.,
    2. Murphy, J.,
    3. Griffiths, G.,
    4. Schleicher, M. and
    5. Noegel, A. A.
    (1993). The actin-binding protein comitin (p24) is a component of the Golgi apparatus. J. Cell Biol 123, 23–34
    OpenUrlAbstract/FREE Full Text
    1. Witke, W.,
    2. Schleicher, M. and
    3. Noegel, A. A.
    (1992). Redundancy in the microfilament system: Dictyostelium cells that lack two F-actin crosslinking proteins show abnormal multicellular development. Cell 68, 53–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Zimmermann, T. and
    2. Siegert, F.
    (1998). Simultaneous detection of two GFP spectral mutants during in vivo confocal microscopy of migrating Dictyostelium cells. Biotechniques 24, 458–461
    OpenUrlPubMed
    1. Zhou, K.,
    2. Pandol, S.,
    3. Bokoch, G. and
    4. Traynor-Kaplan, A. E.
    (1998). Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3, 4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis. J. Cell Sci 111, 283–294
    OpenUrlAbstract/FREE Full Text
    1. Zischka, H.,
    2. Oehme, F.,
    3. Pintsch, T.,
    4. Ott, A.,
    5. Keller, H.,
    6. Kellermann, J. and
    7. Schuster, S. C.
    (1999). Rearrangement of cortex proteins constitutes an osmoprotective mechanism in Dictyostelium. EMBO J 18, 4241–4249
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The actin cytoskeleton of Dictyostelium: a story told by mutants
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
The actin cytoskeleton of Dictyostelium: a story told by mutants
A.A. Noegel, M. Schleicher
Journal of Cell Science 2000 113: 759-766;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
The actin cytoskeleton of Dictyostelium: a story told by mutants
A.A. Noegel, M. Schleicher
Journal of Cell Science 2000 113: 759-766;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Relationships between EEA1 binding partners and their role in endosome fusion
  • A nuclear tale of two yeasts
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992