Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Article
Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed
M. Geese, K. Schluter, M. Rothkegel, B.M. Jockusch, J. Wehland, A.S. Sechi
Journal of Cell Science 2000 113: 1415-1426;
M. Geese
Department of Cell Biology, Gesellschaft fur Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Schluter
Department of Cell Biology, Gesellschaft fur Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Rothkegel
Department of Cell Biology, Gesellschaft fur Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.M. Jockusch
Department of Cell Biology, Gesellschaft fur Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Wehland
Department of Cell Biology, Gesellschaft fur Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.S. Sechi
Department of Cell Biology, Gesellschaft fur Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF
Loading

Summary

The spatial and temporal activity of the actin cytoskeleton is precisely regulated during cell motility by several microfilament-associated proteins of which profilin plays an essential role. We have analysed the distribution of green fluorescent protein (GFP)-tagged profilins in cultured and in Listeria-infected cells. Among the different GFP-profilin fusion proteins studied, only the construct in which the GFP moiety was fused to the carboxy terminus of profilin II (profilin II-GFP) was recruited by intracellular Listeria. The in vitro ligand-binding properties of this construct, e.g. the binding to monomeric actin, poly-L-proline and phosphatidylinositol 4,5-bisphosphate (PIP2), were unaffected by GFP. Profilin II-GFP co-localised with vinculin and Mena to the focal adhesions in REF-52 fibroblasts and was distributed as a thin line at the front of protruding lamellipodia in B16-F1 mouse melanoma cells. In Listeria-infected cells, profilin II-GFP was recruited, in an asymmetric fashion, to the surface of Listeria at the onset of motility whereas it was not detectable on non-motile bacteria. In contrast to the vasodilator-stimulated phosphoprotein (VASP), profilin II-GFP localised at the bacterial surface only on motile Listeria. Moreover, the fluorescence intensity of profilin II-GFP directly correlated with the speed of the bacteria. Thus, the use of GFP-tagged profilin II provides new insights into the role of profilins in cellular motility.

  • © 2000 by Company of Biologists

REFERENCES

    1. Abel, K.,
    2. Lingnau, A.,
    3. Niebuhr, K.,
    4. Wehland, J. and
    5. Walter, U.
    (1996). Monoclonal antibodies against the focal adhesion protein VASP revealing epitopes involved in the interaction with two VASP binding proteins and VASP phosphorylation. Eur. J. Cell Biol 69, 42–.
    OpenUrl
    1. Bachmann, C.,
    2. Fischer, L.,
    3. Walter, U. and
    4. Reinhard, M.
    (1999). The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J. Biol. Chem 274, 23549–23557
    OpenUrlAbstract/FREE Full Text
    1. Bi, E. and
    2. Zigmond, S. H.
    (1999). Actin polymerization: Where the WASP stings. Curr. Biol 9, 160–163
    OpenUrlCrossRef
    1. Bjorkegren, C.,
    2. Rozycki, M.,
    3. Schutt, C. E.,
    4. Lindberg, U. and
    5. Karlsson, R.
    (1993). Mutagenesis of human profilin locates its poly(L-proline)-binding site to a hydrophobic patch of aromatic amino acids. FEBS Lett 333, 123–126
    OpenUrlCrossRefPubMedWeb of Science
    1. Buβ, F.,
    2. Temm-Grove, C.,
    3. Henning, S. and
    4. Jockusch, B. M.
    (1992). Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil. Cytoskel 22, 51–61
    OpenUrlCrossRefPubMedWeb of Science
    1. Carlier, M. F. and
    2. Pantaloni, D.
    (1997). Control of actin dynamics in cell motility. J. Mol. Biol 269, 459–467
    OpenUrlCrossRefPubMedWeb of Science
    1. Carlsson, L.,
    2. Nystrom, L. E.,
    3. Sundkvist, I.,
    4. Markey, F. and
    5. Lindberg, U.
    (1977). Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol 115, 465–83
    OpenUrlCrossRefPubMedWeb of Science
    1. Chakraborty, T.,
    2. Ebel, F.,
    3. Domann, E.,
    4. Niebuhr, K.,
    5. Gerstel, B.,
    6. Pistor, S.,
    7. Temm-Grove, C.,
    8. Jockusch, B. M.,
    9. Reinhard, M.,
    10. Walter, U. and
    11. Wehland, J.
    (1995). A focal adhesion factor directly linking intracellularlymotile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J 14, 1314–1321
    OpenUrlPubMedWeb of Science
    1. Chaudhary, A.,
    2. Chen, J.,
    3. Gu, Q. M.,
    4. Witke, W.,
    5. Kwiatkowski, D. J. and
    6. Prestwich, G. D.
    (1998). Probing the phosphoinositide 4, 5-bisphosphate binding site of human profilin I. Chem. Biol 5, 273–281
    OpenUrlCrossRefPubMedWeb of Science
    1. Cooley, L.,
    2. Verheyen, E. and
    3. Ayers, K.
    (1992). chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69, 173–84
    OpenUrlCrossRefPubMedWeb of Science
    1. Didry, D.,
    2. Carlier, M. F. and
    3. Pantaloni, D.
    (1998). Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J. Biol. Chem 273, 25602–25611
    OpenUrlAbstract/FREE Full Text
    1. Domann, E.,
    2. Wehland, J.,
    3. Rohde, M.,
    4. Pistor, S.,
    5. Hartl, M.,
    6. Goebel, W.,
    7. Leimeister-Wachter, M.,
    8. Wuenscher, M. and
    9. Chakraborty, T.
    (1992). A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J 11, 1981–90
    OpenUrlPubMedWeb of Science
    1. Dramsi, S. and
    2. Cossart, P.
    (1998). Intracellular pathogens and the actin cytoskeleton. Annu. Cell Dev. Biol 14, 137–166
    OpenUrlCrossRefPubMedWeb of Science
    1. Ebel, F.,
    2. Rohde, M.,
    3. von Eichel-Streiber, C.,
    4. Wehland, J. and
    5. Chakraborty, T.
    (1999). The actin-based motility of intracellular Listeria monocytogenes is not controlled by small GTP-binding proteins of the Rho-and Ras-subfamilies. FEMS Microbiol. Lett 176, 117–124
    OpenUrlAbstract/FREE Full Text
    1. Finkel, T.,
    2. Theriot, J. A.,
    3. Dise, K. R.,
    4. Tomaselli, G. F. and
    5. Goldschmidt-Clermont, P. J.
    (1994). Dynamic actin structures stabilized by profilin. Proc. Nat. Acad. Sci. USA 91, 1510–1514
    OpenUrlAbstract/FREE Full Text
    1. Gertler, F. B.,
    2. Niebuhr, K.,
    3. Reinhard, M.,
    4. Wehland, J. and
    5. Soriano, P.
    (1996). Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239
    OpenUrlCrossRefPubMedWeb of Science
    1. Giehl, K.,
    2. Valenta, R.,
    3. Rothkegel, M.,
    4. Ronsiek, M.,
    5. Mannherz, H. G. and
    6. Jockusch, B. M.
    (1994). Interaction of plant profilin with mammalian actin. Eur. J. Biochem 226, 681–689
    OpenUrlPubMedWeb of Science
    1. Gieselmann, R.,
    2. Kwiatkowski, D. J.,
    3. Janmey, P. A. and
    4. Witke, W.
    (1995). Distinct biochemical characteristics of the two human profilin isoforms. Eur. J. Biochem 229, 621–8
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldschmidt-Clermont, P. J.,
    2. Machesky, L. M.,
    3. Doberstein, S. K. and
    4. Pollard, T. D.
    (1991). Mechanism of the interaction of human platelet profilin with actin. J. Cell Biol 113, 1081–1089
    OpenUrlAbstract/FREE Full Text
    1. Haugwitz, M.,
    2. Noegel, A. A.,
    3. Karakesisoglou, J. and
    4. Schleicher, M.
    (1994). Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell 79, 303–314
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartwig, J. H.,
    2. Chambers, K. A.,
    3. Hopcia, K. L. and
    4. Kwiatkowski, D. J.
    (1989). Association of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation. J. Cell Biol 109, 1571–1579
    OpenUrlAbstract/FREE Full Text
    1. Higley, S. and
    2. Way, M.
    (1997). Actin and cell pathogenesis. Curr. Opin. Cell Biol 9, 62–69
    OpenUrlCrossRefPubMed
    1. Honore, B.,
    2. Madsen, P.,
    3. Andersen, A. H. and
    4. Leffers, H.
    (1993). Cloning and expression of a novel human profilin variant, profilin II. FEBS Lett 330, 151–155
    OpenUrlCrossRefPubMedWeb of Science
    1. Houk, T. W. Jr.. and
    2. Ue, K.
    (1974). The measurement of actin concentration in solution: a comparison of methods. Anal. Biochem 62, 66–74
    OpenUrlCrossRefPubMedWeb of Science
    1. Huttelmaier, S.,
    2. Mayboroda, O.,
    3. Harbeck, B.,
    4. Jarchau, T.,
    5. Jockusch, B. M. and
    6. Rudiger, M.
    (1998). The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4, 5-bisphosphate. Curr. Biol 8, 479–488
    OpenUrlCrossRefPubMedWeb of Science
    1. Huttelmaier, S.,
    2. Harbeck, B.,
    3. Steffens, O.,
    4. Messerschmidt, T.,
    5. Illenberger, S. and
    6. Jockusch, B. M.
    (1999). Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Lett 451, 68–74
    OpenUrlCrossRefPubMed
    1. Jonckheere, V.,
    2. Lambrechts, A.,
    3. Vandekerckhove, J. and
    4. Ampe, C.
    (1999). Dimerization of profilin II upon binding the (GP5)3 peptide from VASP overcomes the inhibition of actin nucleation by profilin II and thymosin beta4. FEBS Lett 447, 257–263
    OpenUrlCrossRefPubMedWeb of Science
    1. Kang, F.,
    2. Laine, R. O.,
    3. Bubb, M. R.,
    4. Southwick, F. S. and
    5. Purich, D. L.
    (1997). Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin-based Listeria motility. Biochemistry 36, 8384–8392
    OpenUrlCrossRefPubMed
    1. Kaiser, D. A.,
    2. Goldschmidt-Clermont, P. J.,
    3. Levine, B. A. and
    4. Pollard, T. D.
    (1989). Characterization of renatured profilin purified by urea elution from poly-L-proline agarose columns. Cell Motil. Cytoskel 14, 251–262
    OpenUrlCrossRefPubMedWeb of Science
    1. Kouyama, T. and
    2. Mihashi, K.
    (1981). Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur. J. Biochem 114, 33–38
    OpenUrlCrossRefPubMedWeb of Science
    1. Lambrechts, A.,
    2. van Damme, J.,
    3. Goethals, M.,
    4. Vandekerckhove, J. and
    5. Ampe., C.
    (1995). Purification and characterization of bovine profilin II. Actin, poly(L-proline) and inositolphospholipid binding. Eur. J. Biochem 230, 281–286
    OpenUrlPubMedWeb of Science
    1. Lambrechts, A.,
    2. Verschelde, J.-L.,
    3. Jonckheere, V.,
    4. Goethals, M.,
    5. Vandekerckhove, J. and
    6. Ampe, C.
    (1997). The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences. EMBO J 16, 484–494
    OpenUrlAbstract
    1. Lanier, L. M.,
    2. Gates, M. A.,
    3. Witke, W.,
    4. Menzies, S.,
    5. Wehman, A. M.,
    6. Macklis, J. D.,
    7. Kwiatkowski, D.,
    8. Soriano, P. and
    9. Gertler, F. B.
    (1999). Mena is required for neurulation and commissure formation. Neuron 22, 313–325
    OpenUrlCrossRefPubMedWeb of Science
    1. Lassing, I. and
    2. Lindberg, U.
    (1985). Specific interaction between phosphatidylinositol 4, 5-bisphosphate and profilactin. Nature 314, 472–474
    OpenUrlCrossRefPubMedWeb of Science
    1. Lassing, I. and
    2. Lindberg, U.
    (1988). Specificity of the interaction between phosphatidylinositol 4, 5-bisphosphate and the profilin:actin complex. J. Cell Biochem 37, 255–267
    OpenUrlCrossRefPubMedWeb of Science
    1. Laurent, V.,
    2. Loisel, T. P.,
    3. Harbeck, B.,
    4. Wehmann, A.,
    5. Gröbe, L.,
    6. Jockusch, B. M.,
    7. Wehland, J.,
    8. Gertler, F. B. and
    9. Carlier, M. F.
    (1999). Role of proteins of the Ena/VASP family in actin based motility of Listeria monocytogenes. J. Cell Biol 144, 1245–1258
    OpenUrlAbstract/FREE Full Text
    1. Lindberg, U.,
    2. Schutt, C. E.,
    3. Hellsten, E.,
    4. Tjader, A. C. and
    5. Hult, T.
    (1988). The use of poly(L-proline)-Sepharose in the isolation of profilin and profilactin complexes. Biochim. Biophys. Acta 967, 391–400
    OpenUrlPubMed
    1. Loisel, T. P.,
    2. Boujemaa, R.,
    3. Pantaloni, D. and
    4. Carlier, M. F.
    (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616
    OpenUrlCrossRefPubMedWeb of Science
    1. Machesky, L. M.,
    2. Atkinson, S. J.,
    3. Ampe, C.,
    4. Vandekerckhove, J. and
    5. Pollard, T. D.
    (1994). Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol 127, 107–115
    OpenUrlAbstract/FREE Full Text
    1. Machesky, L. M. and
    2. Gould, K. L.
    (1999). The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell Biol 11, 117–121
    OpenUrlCrossRefPubMedWeb of Science
    1. Mahoney, N. M.,
    2. Janmey, P. A. and
    3. Almo, S. C.
    (1997). Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Nature Struct. Biol 4, 953–960
    OpenUrlCrossRefPubMedWeb of Science
    1. Marchand, J.,
    2. Moreau, P.,
    3. Paoletti, A.,
    4. Cossart, P.,
    5. Carlier, M. F. and
    6. Pantaloni, D.
    (1995). Actin-based movement of Listeria monocytogenes: Actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol 130, 331–343
    OpenUrlAbstract/FREE Full Text
    1. Mayboroda, O.,
    2. Schluter, K. and
    3. Jockusch, B. M.
    (1997). Differential colocalization of profilin with microfilaments in PtK2cells. Cell. Motil. Cytoskel 37, 166–177
    OpenUrlCrossRefPubMedWeb of Science
    1. Mounier, J.,
    2. Laurent, V.,
    3. Hall, A.,
    4. Fort, P.,
    5. Carlier, M. F.,
    6. Sansonetti, P. J. and
    7. Egile, C.
    (1999). Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci 112, 2069–2080
    OpenUrlAbstract/FREE Full Text
    1. Neely, M. D. and
    2. Macaluso, E.
    (1997). Motile areas of leech neurites are rich in microfilaments and two actin-binding proteins: gelsolin and profilin. Proc. R. Soc. Lond. B. Biol. Sci 264, 1701–1706
    OpenUrlAbstract/FREE Full Text
    1. Niebuhr, K.,
    2. Ebel, F.,
    3. Frank, R.,
    4. Reinhard, R.,
    5. Domann, E.,
    6. Carl, U. D.,
    7. Walter, U.,
    8. Gertler, F. B.,
    9. Wehland, J. and
    10. Chakraborty, T.
    (1997). A novel proliner-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16, 5433–5444
    OpenUrlAbstract
    1. Pantaloni, D. and
    2. Carlier, M. F.
    (1993). How profilin promotes actin filament assembly in the presence of thymosin4. Cell 75, 1007–1014
    OpenUrlCrossRefPubMedWeb of Science
    1. Raghunathan, V.,
    2. Mowery, P.,
    3. Rozycki, M.,
    4. Lindberg, U. and
    5. Schutt, C.
    (1992). Structural changes in profilin accompany its binding to phosphatidylinositol 4,5-bisphosphate. FEBS Lett 297, 46–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Reinhard, M.,
    2. Halbrugge, M.,
    3. Scheer, U.,
    4. Wiegand, C.,
    5. Jockusch, B. M. and
    6. Walter, U.
    (1992). The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11, 2063–2070
    OpenUrlPubMedWeb of Science
    1. Reinhard, M.,
    2. Giehl, K.,
    3. Abel, K.,
    4. Haffner, C.,
    5. Jarchau, T.,
    6. Hoppe, V.,
    7. Jockusch, B. M. and
    8. Walter, U.
    (1995). The proline-rich focal adhesionand microfilament protein VASP is a ligand for profilins. EMBO J 14, 1583–1589
    OpenUrlPubMedWeb of Science
    1. Rothkegel, M.,
    2. Mayboroda, O.,
    3. Rohde, M.,
    4. Wucherpfennig, C.,
    5. Valenta, R. and
    6. Jockusch, B. M.
    (1996). Plant and animal profilins are functionally equivalent and stabilize microfilaments in living animal cells. J. Cell Sci 109, 83–90
    OpenUrlAbstract/FREE Full Text
    1. Rudiger, M.,
    2. Jockusch, B. M. and
    3. Rothkegel, M.
    (1997). Epitope tag-antibody combination useful for the detection of protein expression in prokaryotic and eukaryotic cells. Biotechniques 23, 96–97
    OpenUrlPubMed
    1. Sanger, J. M.,
    2. Mittal, B.,
    3. Southwick, F. S. and
    4. Sanger, J. W.
    (1995). Listeria monocytogenes intracellular migration: inhibition by profilin, vitamin D-binding protein and DNase I. Cell Motil. Cytoskel 30, 38–49
    OpenUrlCrossRefPubMed
    1. Schluter, K.,
    2. Jockusch, B. M. and
    3. Rothkegel, M.
    (1997). Profilins as regulators of actin dynamics. Biochim. Biophys. Acta 1359, 97–109
    OpenUrlCrossRefPubMedWeb of Science
    1. Sechi, A. S.,
    2. Wehland, J. and
    3. Small, J. V.
    (1997). The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J. Cell Biol 137, 155–167
    OpenUrlAbstract/FREE Full Text
    1. Small, J. V.,
    2. Rottner, K. and
    3. Kaverina, I.
    (1999). Functional design in the actin cytoskeleton. Curr. Opin. Cell Biol 11, 54–60
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith, G. A.,
    2. Theriot, J. A. and
    3. Portnoy, D. A.
    (1996). The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin based motility, the percentage of moving bacteria and the localization of VASP and profilin. J. Cell Biol 135, 647–660
    OpenUrlAbstract/FREE Full Text
    1. Suetsugu, S.,
    2. Miki, H. and
    3. Takenawa, T.
    (1998). The essential role of profilin in the assembly of actin for microspike formation. EMBO J 17, 6516–6526
    OpenUrlAbstract
    1. Tanaka, M. and
    2. Shibata, H.
    (1985). Poly(L-proline)-binding proteins from chick embryos are profilin and profilactin. Eur. J. Biochem 151, 291–297
    OpenUrlPubMedWeb of Science
    1. Tarachandani, A. and
    2. Wang, Y.-L.
    ) (1996). Site-directed mutagenesis enabled preparation of a functional fluorescent analog of profilin: biochemical characterization and localization in living cells. Cell Motil. Cytoskel 34, 313–323
    OpenUrlCrossRefPubMed
    1. Theriot, J. A.,
    2. Mitchison, T. J.,
    3. Tilney, L. G. and
    4. Portnoy, D. A.
    (1992). The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260
    OpenUrlCrossRefPubMedWeb of Science
    1. Theriot, J. A.,
    2. Rosenblatt, J.,
    3. Portnoy, D. A.,
    4. Goldschmidt-Clermont, P. J. and
    5. Mitchison, T. J.
    (1994). Involvement of profilin in the actin-based motility of Listeria monocytogenes in cells and in cell-free extracts. Cell 76, 505–517
    OpenUrlCrossRefPubMedWeb of Science
    1. Tilney, L. G. and
    2. Portnoy, D. A.
    (1989). Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol 109, 1597–1608
    OpenUrlAbstract/FREE Full Text
    1. Verheyen, E. M. and
    2. Cooley, L.
    (1994). Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120, 717–728
    OpenUrlAbstract
    1. Watanabe, N.,
    2. Madaule, P.,
    3. Reid, T.,
    4. Ishizaki, T.,
    5. Watanabe, G.,
    6. Kakizuka, A.,
    7. Saito, Y.,
    8. Nakao, K.,
    9. Jockusch, B. M. and
    10. Narumiya, S.
    (1997). p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16, 3044–3056
    OpenUrlAbstract
    1. Wiedemann, P.,
    2. Giehl, K.,
    3. Almo, S. C.,
    4. Fedorov, A. A.,
    5. Girvin, M.,
    6. Steinberger, P.,
    7. Rudiger, M.,
    8. Ortner, M.,
    9. Sippl, M.,
    10. Dolecek, C.,
    11. Kraft, D.,
    12. Jockusch, B. and
    13. Valenta, R.
    (1996). Molecular and structural analysis of a continuous birch profilin epitope defined by a monoclonal antibody. J. Biol. Chem 271, 29915–29921
    OpenUrlAbstract/FREE Full Text
    1. Witke, W.,
    2. Sharpe, A. H. and
    3. Kwiatkowski, D. J.
    (1993). Profilin deficient mice are not viable. Mol. Biol. Cell 4, 149–.
    OpenUrl
    1. Witke, W.,
    2. Podtelejnikov, A. V.,
    3. Di Nardo, A.,
    4. Sutherland, J. D.,
    5. Gurniak, C. B.,
    6. Dotti, C. and
    7. Mann, M.
    (1998). In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J 17, 967–976
    OpenUrlAbstract
    1. Zeile, W. L.,
    2. Purich, D. L. and
    3. Southwick, F. S.
    (1996). Recognition of two classes of oligoproline sequences in profilin-mediated acceleration of actin-based Shigella motility. J. Cell Biol 133, 49–59
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed
M. Geese, K. Schluter, M. Rothkegel, B.M. Jockusch, J. Wehland, A.S. Sechi
Journal of Cell Science 2000 113: 1415-1426;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed
M. Geese, K. Schluter, M. Rothkegel, B.M. Jockusch, J. Wehland, A.S. Sechi
Journal of Cell Science 2000 113: 1415-1426;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
  • The cytoplasmic fate of mRNA
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Follow us on Instagram

Cell science is bursting with beautiful images and over on Instagram, we’re showing them off! Find both JCS and FocalPlane on Instagram for stories and techniques across cell biology.


An interview with Derek Walsh

Professor Derek Walsh is the guest editor of our new special issue Cell Biology of Host-Pathogen Interactions. In an interview, Derek tells us about his work in the field of DNA viruses, the impact of the pandemic on virology and what his role as Guest Editor taught him.


How to improve your scientific writing

"If you are a scientist and you want to succeed, you must become a writer."

How do scientists become master storytellers? We called on our journal Editors, proofreaders and contributors to our community sites for their advice on how to improve your scientific writing.


Meet the preLighters: Jennifer Ann Black

Following the theme of our latest special issue, postdoc Jennifer Ann Black studies replication stress and genome plasticity in Leishmania in Professor Luiz Tosi’s lab in Sao Paolo. We caught up with Jenn (virtually) to hear about her relocation to Brazil mid-pandemic, her research on parasites and what she enjoys about ‘preLighting’.

In our special issue, Chandrakar et al. and Rosazza et al. present their latest work on Leishmania.


Mole – The Corona Files

“There are millions of people around the world who continue to believe that the Terrible Pandemic is a hoax.”

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992