Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Article
Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes?
C.J. Hutchison, M. Alvarez-Reyes, O.A. Vaughan
Journal of Cell Science 2001 114: 9-19;
C.J. Hutchison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Alvarez-Reyes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O.A. Vaughan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The nuclear lamina is a filamentous structure composed of lamins that supports the inner nuclear membrane. Several integral membrane proteins including emerin, LBR, LAP1 and LAP2 bind to nuclear lamins in vitro and can influence lamin function and dynamics in vivo. Results from various studies suggest that lamins function in DNA replication and nuclear envelope assembly and determine the size and shape of the nuclear envelope. In addition, lamins also bind chromatin and certain DNA sequences, and might influence chromosome position. Recent evidence has revealed that mutations in A-type lamins give rise to a range of rare, but dominant, genetic disorders, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction-system disease and Dunnigan-type familial partial lipodystrophy. An examination of how lamins A/C, emerin and other integral membrane proteins interact at the INM provides the basis for a novel model for how mutations that promote disease phenotypes are likely to influence these interactions and therefore cause cellular pathology through a combination of weakness of the lamina or altered gene expression.

  • © 2001 by Company of Biologists

REFERENCES

    1. Benavente, R.,
    2. Krohne, G. and
    3. Franke, W. W.
    ( 1985). Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell 41, 177– 190
    OpenUrlCrossRefPubMed
    1. Bonne, G.,
    2. Di Barletta, M. R.,
    3. Varnous, S.,
    4. Becane, H. M.,
    5. Hammouda, E. H.,
    6. Merlini, L.,
    7. Muntoni, F.,
    8. Greenberg, C. R.,
    9. Gary, F.,
    10. Urtizberea, J.A.,
    11. Duboc, D.,
    12. Fardeau, M.,
    13. Toniolo, D. and
    14. Schwartz, K.
    ( 1999). Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature Genet 21, 285– 288
    OpenUrlCrossRefPubMedWeb of Science
    1. Bridger, J. M.,
    2. Kill, I. R.,
    3. O'Farrell, M. and
    4. Hutchison, C. J.
    ( 1993). Internal lamin foci in G1nuclei of human dermal fibroblasts. J. Cell Sci 104, 297– 306
    OpenUrlAbstract/FREE Full Text
    1. Brodsky, G. L.,
    2. Muntoni, F.,
    3. Miocic, S.,
    4. Sinagra, G.,
    5. Sewry, C. and
    6. Mestroni, L.
    ( 2000). Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101, 473– 476
    OpenUrlAbstract/FREE Full Text
    1. Broers, J. L.,
    2. Machiels, B. M.,
    3. van Eys, G. J.,
    4. Kuijpers, H. J.,
    5. Manders, E. M.,
    6. van Driel, R. and
    7. Ramaekers, F. C.
    ( 1999). Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J. Cell Sci 112, 3463– 3475
    OpenUrlAbstract/FREE Full Text
    1. Cao, H. and
    2. Hegele, R. A.
    ( 2000). Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Gen 9, 109– 112
    OpenUrlAbstract/FREE Full Text
    1. Chipev, C. C.,
    2. Yang, J. M.,
    3. DiGiovanna, J. J.,
    4. Steinert, P. M.,
    5. Marekov, L.,
    6. Compton, J. G. and
    7. Bale, S. J.
    ( 1994). Preferential sites in keratin 10 that are mutated in epidermolytic hyperkeratosis. Am. J. Hum. Genet 54, 179– 190
    OpenUrlPubMedWeb of Science
    1. Clements, I.,
    2. Manilal, S.,
    3. Love, D. R. and
    4. Morris, G. E.
    ( 2000). Direct interaction between emerin and lamin A. Biochem. Biophys. Res. Commun 267, 709– 714
    OpenUrlCrossRefPubMedWeb of Science
    1. Dabauville, M. C.,
    2. Muller, E.,
    3. Ewald, A.,
    4. Kress, W.,
    5. Krohne, G. and
    6. Muller, C. R.
    ( 1999). Distribution of emerin during the cell cycle. Eur. J. Cell Biol 78, 749– 756
    OpenUrlPubMedWeb of Science
    1. Dechat, T.,
    2. Gotzman, J.,
    3. Stockinger, A.,
    4. Harris, J.,
    5. Talle, M. A.,
    6. Siekierka, J. J. and
    7. Foisner, R.
    ( 1998). Detergent-salt resistance of LAP2in interphase nuclei and phosphorylation dependent association with chromosomes early in nuclear structure dynamics. EMBO J 17, 4887– 4902
    OpenUrlAbstract/FREE Full Text
    1. Dechat, T.,
    2. Korbei, B.,
    3. Vaughan, O. A.,
    4. Vlcek, S.,
    5. Hutchison, C. J. and
    6. Foisner, R.
    ( 2000). Intranuclear Lamina-associated polypeptide 2binds A-type lamins. J. Cell Sci. 113,.
    1. Drummond, S.,
    2. Ferrigno, P.,
    3. Lyon, C.,
    4. Murphy, J.,
    5. Goldberg, M.,
    6. Allen, T.,
    7. Smythe, C. and
    8. Hutchison, C. J.
    ( 1999). Temporal differences in the appearance of NEP-B78 and an LBR-like protein during Xenopus nuclear envelope reassembly reflect the ordered recruitment of functionally discrete vesicle types. J. Cell Biol 144, 225– 240
    OpenUrlAbstract/FREE Full Text
    1. Dyer, J. A.,
    2. Lane, B. E. and
    3. Hutchison, C. J.
    ( 1999). Investigations of the pathway of incorporation and function of lamin A in the nuclear lamina. Microsc. Res. Tech 45, 1– 12
    OpenUrlCrossRefPubMed
    1. Emery, A. E.
    ( 1989). Emery-Dreifuss Syndrome. J. Med. Gen 26, 637– 641
    OpenUrlAbstract/FREE Full Text
    1. Fairley, E. A. L.,
    2. Kendrick-Jones, J. and
    3. Ellis, J. A.
    ( 1999). The Emery-Dreifuss muscular dystrophy phenotype arises from aberrant targeting and binding of emerin at the inner nuclear membrane. J. Cell Sci 112, 2571– 2582
    OpenUrlAbstract/FREE Full Text
    1. Fatkin, D.,
    2. MacRae, C.,
    3. Sasaki, T.,
    4. Wolff, M. R.,
    5. Porcu, M.,
    6. Frenneaux, M.,
    7. Atherton, J.,
    8. Vidaillet, H. J. Jr..,
    9. Spudich, S.,
    10. De Girolami, U.,
    11. Seidman, J. G.,
    12. Seidman, C.,
    13. Muntoni, F.,
    14. Muehle, G.,
    15. Johnson, W. and
    16. McDonough, B.
    ( 1999). Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. New Eng. J. Med 341, 1715– 1724
    OpenUrlCrossRefPubMedWeb of Science
    1. Fidzianska, A.,
    2. Toniolo, D. and
    3. Hausmanowa-Petrusewicz, I.
    ( 1998). Ultrastructural abnormality of sarcolemmal nuclei in Emery-Dreifuss muscular dystrophy (EDMD). J. Neurol. Sci 159, 88– 93
    OpenUrlCrossRefPubMedWeb of Science
    1. Firmbach-Kraft, I. and
    2. Stick, R.
    ( 1995). Analysis of nuclear lamin isoprenylation in Xenopus oocytes: Isoprenylation of lamin B3 precedes its uptake into the nucleus. J. Cell Biol 129, 17– 24
    OpenUrlAbstract/FREE Full Text
    1. Foisner, R. and
    2. Gerace, L.
    ( 1993). Integral membrane proteins of the nuclear envelope interact with lamins and chromasomes and binding is modulated by mitotic phosphorylation. Cell 73, 1267– 1279
    OpenUrlCrossRefPubMedWeb of Science
    1. Fricker, M.,
    2. Hollinshead, M.,
    3. White, N. and
    4. Vaux, D.
    ( 1997). Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular invaginations of the nuclear envelope. J. Cell Biol 136, 531– 544
    OpenUrlAbstract/FREE Full Text
    1. Furukawa, K. and
    2. Hotta, Y.
    ( 1993). cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 12, 97– 106
    OpenUrlPubMedWeb of Science
    1. Furukawa, K.
    ( 1999). LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J. Cell Sci 112, 2485– 2492
    OpenUrlAbstract/FREE Full Text
    1. Gant, T. M.,
    2. Harris, C. A. and
    3. Wilson, K. L.
    ( 1999). Roles of LAP2 proteins in nuclear assembly and DNA replication: Truncated LAP2proteins alter lamina assembly, envelope formation, nuclear size and DNA replication efficiency in Xenopus laevis extracts. J. Cell Biol 144, 1083– 1096
    OpenUrlAbstract/FREE Full Text
    1. Gerace, L. and
    2. Blobel, G.
    ( 1980). The nuclear envelope lamina is reversibly depolymerised during mitosis. Cell 19, 277– 287
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldman, A. E.,
    2. Moir, R. D.,
    3. Montag-Lowy, M.,
    4. Stewert, M. and
    5. Goldman, R. D.
    ( 1992). Pathway of incorporation of microinjected lamin A into the nuclear envelope. J. Cell Biol 119, 725– 735
    OpenUrlAbstract/FREE Full Text
    1. Harris, C. A.,
    2. Andryuk, P. J.,
    3. Cline, S. W.,
    4. Mathew, S.,
    5. Siekierka, J. J. and
    6. Goldstein, G.
    ( 1995). Structure and mapping of the human thymopoietin (TMPO) gene and relationship of human TMPO beta to rat lamin-associated polypeptide 2. Genomics 28, 198– 205
    OpenUrlCrossRefPubMedWeb of Science
    1. Heitlinger, E.,
    2. Peter, M.,
    3. Haner, M.,
    4. Lustig, A.,
    5. Aebi, U. and
    6. Nigg, E. A.
    ( 1991). Expression of chicken lamin B2 in Escherichia coli: Characterisation of its structure, assembly, and molecular interactions. J. Cell Biol 113, 485– 495
    OpenUrlAbstract/FREE Full Text
    1. Hennekes, H.,
    2. Peter, M.,
    3. Weber, K. and
    4. Nigg, E. A.
    ( 1993). Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J. Cell Biol 120, 1293– 1304
    OpenUrlAbstract/FREE Full Text
    1. Hennekes, H. and
    2. Nigg, E. A.
    ( 1994). The role of isoprenylation in membrane attachment of nuclear lamins. A single point mutation prevents the proteolytic cleavage of the lamin A precursor and confers membrane binding properties. J. Cell Sci 107, 1019– 1029
    OpenUrlAbstract/FREE Full Text
    1. Holtz, D.,
    2. Tanaka, R. A.,
    3. Hartwig, J. and
    4. McKeown, F.
    ( 1989). The CaaX motif of lamin A functions in conjunction with the nuclear localisation signal to target assembly to the nuclear envelope. Cell 59, 969– 977
    OpenUrlCrossRefPubMedWeb of Science
    1. Horton, H.,
    2. McMorrow, I. and
    3. Burke, B.
    ( 1992). Independent expression and assembly properties of heterologous lamins A and C in murine embryonal carcinomas. Eur. J. Cell Biol 57, 172– 183
    OpenUrlPubMedWeb of Science
    1. Hozak, P.,
    2. Sasseville, A. M.,
    3. Raymond, Y. and
    4. Cook, P. R.
    ( 1995). Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci 108, 635– 644
    OpenUrlAbstract/FREE Full Text
    1. Jagatheesan, G.,
    2. Thanumalayan, S.,
    3. Muralikrishna, B.,
    4. Rangara, N.,
    5. Karande, A. A. and
    6. Parnaik, V. K.
    ( 1999). Colocalisation of intranuclear lamin foci with RNA splicing factors. J. Cell Sci 112, 4651– 4661
    OpenUrlAbstract/FREE Full Text
    1. Kapiloff, M. S.,
    2. Schillace, R. V.,
    3. Westphal, A. M. and
    4. Scott, J. D.
    ( 1999). mAKAP: an A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes. J. Cell Sci 112, 2725– 2736
    OpenUrlAbstract/FREE Full Text
    1. Kitten, G. T. and
    2. Nigg, E. A.
    ( 1991). The CaaX motif is required for isoprenylation, carboxylmethylation and nuclear membrane association of lamin B2. J. Cell Biol 113, 13– 23
    OpenUrlAbstract/FREE Full Text
    1. Krohne, G.,
    2. Waizenegger, I. and
    3. Hoger, T. H.
    ( 1989). The conserved carboxy-terminal cysteine of nuclear lamins is essential for lamin association with the nuclear envelope. J. Cell Biol 109, 2003– 2011
    OpenUrlAbstract/FREE Full Text
    1. Lehner, C. F.,
    2. Stick, R.,
    3. Eppenberger, H. M. and
    4. Nigg, E. A.
    ( 1987). Differential expression of nuclear lamin proteins during chicken development. J. Cell Biol 105, 577– 587
    OpenUrlAbstract/FREE Full Text
    1. Lenz-Böhme, B.,
    2. Wismar, J.,
    3. Fuchs, S.,
    4. Reifegerste, R.,
    5. Buchner, E.,
    6. Betz, H. and
    7. Schmitt, B.
    ( 1997). Insertional mutation of the Drosophila nuclear lamin Dmo gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J. Cell Biol 137, 1001– 1016
    OpenUrlAbstract/FREE Full Text
    1. Maison, C.,
    2. Pyrpasopoulou, A.,
    3. Theodoropoulou, P. A. and
    4. Georgatos, S. D.
    ( 1997). The inner nuclear membrane protein LAP1 forms a native complex with B-type lamins and partitions with spindle-associated mitotic vesicles. EMBO J 16, 4839– 4850
    OpenUrlCrossRefPubMedWeb of Science
    1. Manilal, S.,
    2. Sewry, C. A.,
    3. Pereboev, A.,
    4. Man, N.,
    5. Gobbi, P.,
    6. Hawkes, S.,
    7. Love, D. R. and
    8. Morris, G. E.
    ( 1999). Distribution of emerin and lamins in the heart and implications for Emery-Dreifuss muscular dystrophy. Hum. Mol. Genet 8, 353– 359
    OpenUrlAbstract/FREE Full Text
    1. Meier, J. and
    2. Georgatos, S. D.
    ( 1994). Type B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: Implications for nuclear assembly. EMBO J 13, 1888– 1898
    OpenUrlPubMedWeb of Science
    1. Mical, T. I. and
    2. Monteiro, M. J.
    ( 1998). The role of sequences unique to intermediate filaments in the targeting and assembly of human lamin B:Evidence for lack of interaction of lamin B with its putative receptor. J. Cell Sci 111, 3471– 3485
    OpenUrlAbstract/FREE Full Text
    1. Moir, R. D.,
    2. Donaldson, A. D. and
    3. Stewert, M.
    ( 1991). Expression in Escherichia coli of human lamins A and C: Influence of head and tail domains on assembly properties and paracrystal formation. J. Cell Sci 99, 363– 372
    OpenUrlAbstract/FREE Full Text
    1. Murphy, J.,
    2. Crompton, C. M.,
    3. Hainey, S.,
    4. Codd, G. A. and
    5. Hutchison, C. J.
    ( 1995). The role of protein phosphorylation in the assembly of a replication competent nucleus: Investigations in Xenopus egg extracts using the cyanobacterial toxin mycrocystin-LR. J. Cell Sci 108, 235– 244
    OpenUrlAbstract/FREE Full Text
    1. Nigg, E. A.
    ( 1989). The nuclear envelope. Curr. Opin. Cell Biol 1, 435– 440
    OpenUrlCrossRefPubMed
    1. Nikolakaki, E.,
    2. Simos, G.,
    3. Spyros, D.,
    4. Georgatos, S. D. and
    5. Giannakouros, T.
    ( 1996). A nuclear envelope-associated kinase phosphorylates arginine-serine motifs and modulates interactions between the lamin B receptor and other nuclear proteins. J. Biol. Chem 271, 8365– 8372
    OpenUrlAbstract/FREE Full Text
    1. Nikolakaki, E.,
    2. Meier, J.,
    3. Simos, G.,
    4. Georgatos, S. D. and
    5. Giannakouros, T.
    ( 1997). Mitotic phosphorylation of the lamin B receptor by a serine/arginine kinase and p34(cdc2). J. Biol. Chem 272, 6208– 6213
    OpenUrlAbstract/FREE Full Text
    1. Ozaki, T.,
    2. Saijo, M.,
    3. Murakami, K.,
    4. Enomoto, H.,
    5. Taya, Y. and
    6. Sakiyama, S.
    ( 1994). Complex formation between lamin A and the retinoblastoma gene product: Identification of the domain on lamin A required for its interaction. Oncogene 9, 2649– 2653
    OpenUrlPubMedWeb of Science
    1. Peter, M.,
    2. Nakagawa, J.,
    3. Doree, M.,
    4. Labbe, J. C. and
    5. Nigg, E. A.
    ( 1990). In vitro disassembly of the nuclear lamina and M phase-specific phosphporylation of lamins by cdc2 kniase. Cell 61, 591– 602
    OpenUrlCrossRefPubMedWeb of Science
    1. Powell, L. and
    2. Burke, B.
    ( 1990). Internuclear exchange of an inner nuclear membrane protein (p55) in heterokaryons: In vivo evidence for the interaction of p55 with the nuclear lamina. J. Cell Biol 111, 2225– 2234
    OpenUrlAbstract/FREE Full Text
    1. Pugh, G. E.,
    2. Coates, P. J.,
    3. Lane, E. B.,
    4. Raymond, Y. and
    5. Quinlan, R. A.
    ( 1997). Distinct nuclear pathways for lamins A and C lend to their increase during quiescence in Swiss 3T3 cells. J. Cell Sci 110, 2483– 2493
    OpenUrlAbstract/FREE Full Text
    1. Pyrpasopoulou, A.,
    2. Meier, J.,
    3. Maison, C.,
    4. Simos, G. and
    5. Georgatos, S. D.
    ( 1996). The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15, 7108– 7119
    OpenUrlPubMedWeb of Science
    1. Raffaele Di Barletta, M.,
    2. Ricci, E.,
    3. Galluzzi, G.,
    4. Tonali, P.,
    5. Mora, M.,
    6. Morandi, L.,
    7. Romorini, A.,
    8. Voit, T.,
    9. Orstavik, K. H.,
    10. Merlini, L.,
    11. Trevisan, C.,
    12. Biancalana, V.,
    13. Housmanowa-Petrusewicz, I.,
    14. Bione, S.,
    15. Ricotti, R.,
    16. Schwartz, K.,
    17. Bonne, G. and
    18. Toniolo, D.
    ( 2000). Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am. J. Hum. Genet 66, 1407– 1412
    OpenUrlCrossRefPubMedWeb of Science
    1. Rober, R. A.,
    2. Weber, K. and
    3. Osborn, M.
    ( 1989). Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: A developmental study. Development 105, 365– 378
    OpenUrlAbstract
    1. Rugg, E. L.,
    2. Morley, S. M.,
    3. Smith, F. J.,
    4. Boxer, M.,
    5. Tidman, M. J.,
    6. Navsaria, H.,
    7. Leigh, I. M. and
    8. Lane, E. B.
    ( 1993). Missing links: Weber-Cockayne keratin mutations implicate the L12 linker domain in effective cytoskeleton function. Nature Genet 5, 294– 300
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasseville, A. M.-J. and
    2. Raymond, Y.
    ( 1995). Lamin A precursor is localised to intranuclear foci. J. Cell Sci 106, 273– 285
    OpenUrl
    1. Shackleton, S.,
    2. Lloyd, D. J.,
    3. Jackson, S. N.,
    4. Evans, R.,
    5. Niermeijer, M. F.,
    6. Singh, B. M.,
    7. Schmidt, H.,
    8. Brabant, G.,
    9. Kumar, S.,
    10. Durrington, P. N.,
    11. Gregory, S.,
    12. O'Rahilly, S. and
    13. Trembath, R. C.
    ( 2000). LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nature Genet 24, 153– 156
    OpenUrlCrossRefPubMedWeb of Science
    1. Simos, G.,
    2. Maison, C. and
    3. Georgatos, S. D.
    ( 1996). Characterisation of p18, a component of the lamin B receptor complex and a new integral membrane protein of the avian erythrocyte nuclear envelope. J. Biol. Chem 271, 12617– 12625
    OpenUrlAbstract/FREE Full Text
    1. Smythe, C.,
    2. Jenkins, H. E. and
    3. Hutchison, C. J.
    ( 2000). Incorporation of the nuclear pore basket protein NUP153 into nuclear pore structures is dependent upon lamina assembly. EMBO J 19, 3918– 3931
    OpenUrlCrossRefPubMedWeb of Science
    1. Stick, R. and
    2. Hausen, P.
    ( 1985). Changes in the nuclear lamina composition during early development of Xenopus laevis. Cell 41, 191– 200
    OpenUrlCrossRefPubMed
    1. Stuurman, N.,
    2. Heins, S. and
    3. Aebi, U.
    ( 1998). Nuclear lamins: Their structure, assembly and interactions. J. Struct. Biol 122, 42– 66
    OpenUrlCrossRefPubMedWeb of Science
    1. Sullivan, T.,
    2. Escalante-Alcalde, D.,
    3. Bhatt, H.,
    4. Anver, M.,
    5. Bhat, N.,
    6. Nagashima, K.,
    7. Stewert, C. L. and
    8. Burke, B.
    ( 1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol 147, 913– 920
    OpenUrlAbstract/FREE Full Text
    1. Thompson, L. J.,
    2. Bollen, M. and
    3. Fields, A. P.
    ( 1997). Identification of protein phosphatase 1 as a mitotic lamin phosphatase. J. Biol. Chem 272, 29693– 29697
    OpenUrlAbstract/FREE Full Text
    1. Vaughan, O. A.,
    2. Whitfield, W. G. F. and
    3. Hutchison, C. J.
    ( 2000). Functions of the nuclear lamins. Protoplasma 211, 1– 7
    OpenUrlCrossRef
    1. Vlcek, S.,
    2. Just, H.,
    3. Dechat, T. and
    4. Foisner, R.
    ( 1999). Functional diversity of LAP2and LAP2 in poasmitotic chromosome association is caused by an alpha-specific nuclear targeting domain. EMBO J 18, 6370– 6384
    OpenUrlCrossRefPubMed
    1. Vorberger, K.,
    2. Kitten, G. T. and
    3. Nigg, E. A.
    ( 1989). Modification of nuclear lamin proteins by a mevalonic acid derivative occurs in reticulocyte lysates and requires the cysteine residue of the C-terminal CXXM motif. EMBO J 8, 4007– 4013
    OpenUrlPubMedWeb of Science
    1. Yang, L.,
    2. Guan, T. and
    3. Gerace, L.
    ( 1997). Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S-phase. J. Cell Biol 139, 1077– 1087
    OpenUrlAbstract/FREE Full Text
    1. Yang, L.,
    2. Guan, T. and
    3. Gerace, L.
    ( 1997). Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol 137, 1199– 1210
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes?
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes?
C.J. Hutchison, M. Alvarez-Reyes, O.A. Vaughan
Journal of Cell Science 2001 114: 9-19;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes?
C.J. Hutchison, M. Alvarez-Reyes, O.A. Vaughan
Journal of Cell Science 2001 114: 9-19;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase
  • Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell adhesion sites
  • Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Introducing FocalPlane’s new Community Manager, Esperanza Agullo-Pascual

We are pleased to welcome Esperanza to the Journal of Cell Science team. The new Community Manager for FocalPlane, Esperanza is joining us from the Microscopy Core at Mount Sinai School of Medicine. Find out more about Esperanza in her introductory post over on FocalPlane.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

"Alongside pre-printing for early documentation of work, such mechanisms are particularly helpful for early-career researchers like me.”

Dr Chris MacDonald (University of York) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Cell scientist to watch: Romain Levayer

In an interview, Romain Levayer talks about starting his own lab, his love for preprints and his experience of balancing parenting with his research goals.


Live lactating mammary tissue

In a stunning video, Stewart et al. demonstrate warping of the alveolar unit due to basal cell-generated force as part of their recent work investigating roles for mechanically activated ion channels in lactation and involution.

Visit our YouTube channel to watch more videos from JCS, our sister journals and the Company.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992