Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Journal Article
WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement
T. Takenawa, H. Miki
Journal of Cell Science 2001 114: 1801-1809;
T. Takenawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Miki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Reorganization of cortical actin filaments plays critical roles in cell movement and pattern formation. Recently, the WASP and WAVE family proteins WASP and N-WASP, and WAVE1, WAVE2 and WAVE3 have been shown to regulate cortical actin filament reorganization in response to extracellular stimuli. These proteins each have a verprolin-homology (V) domain, cofilin-homology (C) domain and an acidic (A) region at the C-terminus, through which they activate the Arp2/3 complex, leading to rapid actin polymerization. N-WASP is usually present as an inactive form in which the VCA region is masked. Cooperative binding of Cdc42 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) exposes the VCA region, activating N-WASP. In addition to this activation mechanism, WISH also activates N-WASP independently of Cdc42 and PtdIns(4,5)P(2), by binding to the proline-rich region of N-WASP. N-WASP activation induces formation of filopodia in vivo. In contrast, the ubiquitously expressed form of WAVE2 is activated downstream of Rac, leading to formation of lamellipodia. In this case, IRSp53 transmits a signal from Rac to WAVE2 through formation of a ternary Rac-IRSp53-WAVE2 complex. Thus, N-WASP, which is activated downstream of Cdc42 or independently by WISH, induces formation of filopodia and WAVE2, which is activated via IRSp53 downstream of Rac, induces formation of lamellipodia.

  • © 2001 by Company of Biologists

REFERENCES

    1. Bailly, M.,
    2. Macaluso, F.,
    3. Cammer, M.,
    4. Chan, A.,
    5. Segall, J. E. and
    6. Condeelis, J. S.
    (1999). Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. J. Cell Biol 145, 331–345
    OpenUrlAbstract/FREE Full Text
    1. Banin, S.,
    2. Truong, O.,
    3. Katz, D. R.,
    4. Waterfield, M. D.,
    5. Brickell, P. M. and
    6. Gout, I.
    (1996). Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases. Curr. Biol 6, 981–998
    OpenUrlCrossRefPubMedWeb of Science
    1. Banzai, Y.,
    2. Miki, H.,
    3. Yamaguchi, H. and
    4. Takenawa, T.
    (2000). Essential role of neural Wiskott-Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells. J. Biol. Chem 275, 11987–11992
    OpenUrlAbstract/FREE Full Text
    1. Bear, J. E.,
    2. Rawls, J. F. and
    3. Saxe, C. L.
    (1998). SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol 142, 1325–1335
    OpenUrlAbstract/FREE Full Text
    1. Bishop, A. L. and
    2. Hall, A.
    (2000). Rho GTPases and their effector proteins. Biochem. J 348, 241–255
    OpenUrlAbstract/FREE Full Text
    1. Blanchoin, L.,
    2. Amann, K. J.,
    3. Higgs, H. N.,
    4. Marchand, J. B.,
    5. Kaiser, D. A. and
    6. Pollard, T. D.
    (2000). Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011
    OpenUrlCrossRefPubMedWeb of Science
    1. Bunnell, S. C.,
    2. Henry, P. A.,
    3. Kolluri, R.,
    4. Kirchhausen, T.,
    5. Rickles, R. J. and
    6. Berg, L. J.
    (1996). Identification of Itk/Tsk Src homology 3 domain ligands. J. Biol. Chem 271, 25646–25656
    OpenUrlAbstract/FREE Full Text
    1. Carlier, M. F.,
    2. Nioche, P.,
    3. Broutin-L'Hermite, I.,
    4. Boujemaa, R.,
    5. Le Clainche, C.,
    6. Egile, C.,
    7. Garbay, C.,
    8. Ducruix, A.,
    9. Sansonetti, P. and
    10. Pantaloni, D.
    (2000). GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J. Biol. Chem 275, 21946–21952
    OpenUrlAbstract/FREE Full Text
    1. Chakraborty, T.,
    2. Ebel, F.,
    3. Domann, E.,
    4. Niebuhr, K.,
    5. Gerstel, B.,
    6. Pistor, S.,
    7. Temm-Grove, C. J.,
    8. Jockusch, B. M.,
    9. Reinhard, M. and
    10. Walter, U.
    (1995). A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J 14, 1314–1321
    OpenUrlPubMedWeb of Science
    1. Derry, J. M.,
    2. Ochs, H. D. and
    3. Francke, U.
    (1994). Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 78, 635–644
    OpenUrlCrossRefPubMedWeb of Science
    1. Egile, C.,
    2. Loisel, T. P.,
    3. Laurent, V.,
    4. Li, R.,
    5. Pantaloni, D.,
    6. Sansonetti, P. J. and
    7. Carlier, M. F.
    (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol 146, 1319–1332
    OpenUrlAbstract/FREE Full Text
    1. Finan, P. M.,
    2. Soames, C. J.,
    3. Wilson, L.,
    4. Nelson, D. L.,
    5. Stewart, D. M.,
    6. Truong, O.,
    7. Hsuan, J. J. and
    8. Kellie, S.
    (1996). Identification of regions of the Wiskott-Aldrich syndrome protein responsible for association with selected Src homology 3 domains. J. Biol. Chem 271, 26291–26295
    OpenUrlAbstract/FREE Full Text
    1. Fukuoka, M.,
    2. Miki, H. and
    3. Takenawa, T.
    (1997). Identification of N-WASP homologs in human and rat brain. Gene 196, 43–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Fukuoka, M.,
    2. Suetsugu, S.,
    3. Miki, H.,
    4. Fukami, K.,
    5. Endo, T. and
    6. Takenawa, T.
    (2001). A novel N-WASP binding protein, WISH induced Arp2/3 complex activation independent of Cdc42. J. Cell Biol 152, 471–482
    OpenUrlAbstract/FREE Full Text
    1. Hall, A.
    (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509–514
    OpenUrlAbstract/FREE Full Text
    1. Higgs, H. N. and
    2. Pollard, T. D.
    (1999). Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J. Biol. Chem 274, 32531–32534
    OpenUrlFREE Full Text
    1. Higgs, H. N. and
    2. Pollard, T. D.
    (2000). Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol 150, 1311–1320
    OpenUrlAbstract/FREE Full Text
    1. Imai, K.,
    2. Nonoyama, S.,
    3. Miki, H.,
    4. Morio, T.,
    5. Fukami, K.,
    6. Zhu, Q.,
    7. Aruffo, A.,
    8. Ochs, H. D.,
    9. Yata, J. and
    10. Takenawa, T.
    (1999). The pleckstrin homology domain of the Wiskott-Aldrich syndrome protein is involved in the organization of actin cytoskeleton. Clin. Immunol 92, 128–137
    OpenUrlCrossRefPubMedWeb of Science
    1. Kato, M.,
    2. Miki, H.,
    3. Imai, S.,
    4. Nonoyama, S.,
    5. Suzuki, T. and
    6. Takenawa, T.
    (1999). Wiskott-Aldrich Syndrome protein induces actin clustering without direct binding to Cdc42. J. Biol. Chem 274, 27225–27230
    OpenUrlAbstract/FREE Full Text
    1. Kenney, D.,
    2. Cairns, L.,
    3. Remold-O'Donnell, E.,
    4. Peterson, J.,
    5. Rosen, F. S. and
    6. Parkman, R.
    (1986). Morphological abnormalities in the lymphocytes of patients with the Wiskott-Aldrich syndrome. Blood 68, 1329–1332
    OpenUrlAbstract/FREE Full Text
    1. Kim, A. S.,
    2. Kakalis, L. T.,
    3. Abdul-Manan, N.,
    4. Liu, G. A. and
    5. Rosen, M. K.
    (2000). Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404, 151–158
    OpenUrlCrossRefPubMedWeb of Science
    1. Laurent, V.,
    2. Loisel, T. P.,
    3. Harbeck, B.,
    4. Wehman, A.,
    5. Grobe, L.,
    6. Jockusch, B. M.,
    7. Wehland, J.,
    8. Gertler, F. B. and
    9. Carlier, M. F.
    (1999). Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol 144, 1245–1258
    OpenUrlAbstract/FREE Full Text
    1. Ma, L.,
    2. Rohatgi, R. and
    3. Kirschner, M.W.
    (1998). The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc. Natl. Acad. Sci. USA 95, 15362–15367
    OpenUrlAbstract/FREE Full Text
    1. Machesky, L. M.,
    2. Atkinson, S. J.,
    3. Ampe, C.,
    4. Vandekerckhove, J. and
    5. Pollard., T. D.
    (1994). Purification of a cortical complex containing two unconventional actins from Acanthameba by affinity chromatography on profilin agarose. J. Cell Biol 127, 107–115
    OpenUrlAbstract/FREE Full Text
    1. Machesky, L. M.,
    2. Mullins, R. D.,
    3. Higgs, H. N.,
    4. Kaiser, D. A.,
    5. Blanchoin, L.,
    6. May, R. C.,
    7. Hall, M. E. and
    8. Pollard, T. D.
    (1999). Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl. Acad. Sci. USA 96, 3739–3744
    OpenUrlAbstract/FREE Full Text
    1. May, R. C.,
    2. Hall, M. E.,
    3. Higgs, H. N.,
    4. Pollard, T. D.,
    5. Chakraborty, T.,
    6. Wehland, J.,
    7. Machesky, L. M. and
    8. Sechi, A. S.
    (1999). The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr. Biol 9, 759–762
    OpenUrlCrossRefPubMedWeb of Science
    1. Miki, H. and
    2. Takenawa, T.
    (1998). Direct binding of the verprolin-homology domain in N-WASP to actin is essential for cytoskeletal reorganization. Biochem. Biophys. Res. Commun 243, 73–78
    OpenUrlCrossRefPubMedWeb of Science
    1. Miki, H.,
    2. Miura, K.,
    3. Matuoka, K.,
    4. Nakata, T.,
    5. Hirokawa, N.,
    6. Orita, S.,
    7. Kaibuchi, K.,
    8. Takai, Y. and
    9. Takenawa, T.
    (1994). Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. J. Biol. Chem 269, 5489–5492
    OpenUrlAbstract/FREE Full Text
    1. Miki, H.,
    2. Miura, K. and
    3. Takenawa, T.
    (1996). N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal ., rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15, 5326–5335
    OpenUrlPubMedWeb of Science
    1. Miki, H.,
    2. Sasaki, T.,
    3. Takai, Y. and
    4. Takenawa, T.
    (1998). Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96
    OpenUrlCrossRefPubMed
    1. Miki, H.,
    2. Suetsugu, S. and
    3. Takenawa, T.
    (1998). WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17, 6932–6941
    OpenUrlAbstract
    1. Miki, H.,
    2. Fukuda, M.,
    3. Nishida, E. and
    4. Takenawa, T.
    (1999). Phosphorylation of WAVE downstream of mitogen-activated protein kinase signaling. J. Biol. Chem 274, 27605–27609
    OpenUrlAbstract/FREE Full Text
    1. Miki, H.,
    2. Yamaguchi, H.,
    3. Suetsugu, S. and
    4. Takenawa, T.
    (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735
    OpenUrlCrossRefPubMed
    1. Miura, K.,
    2. Miki, H.,
    3. Shimazaki, K.,
    4. Kawai, N. and
    5. Takenawa, T.
    (1996). Interaction of Ash/Grb-2 via its SH3 domains with neuron-specific p150 and p65. Biochem. J 316, 639–645
    OpenUrlAbstract/FREE Full Text
    1. Molina, I. J.,
    2. Kenney, D. D.,
    3. Rosen, F. S. and
    4. Remold-O'Donnell, E.
    (1992). T cell lines chatacterize events in the pathogenesis of the Wiskott-Aldrich syndrome. J. Exp. Med 176, 867–874
    OpenUrlAbstract/FREE Full Text
    1. Morrogh, L. M.,
    2. Hinshelwood, S.,
    3. Costello, P.,
    4. Cory, G. O. and
    5. Kinnon, C.
    (1999). The SH3 domain of Bruton's tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur. J. Immunol 29, 2269–2279
    OpenUrlCrossRefPubMed
    1. Mullins, R. D.,
    2. Heuser, J. A. and
    3. Pollard, T. D.
    (1998). The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95, 6181–6186
    OpenUrlAbstract/FREE Full Text
    1. Ohta, Y.,
    2. Suzuki, N.,
    3. Nakamura, S.,
    4. Hartwig, J. H. and
    5. Stossel, T. P.
    (1999). The small GTPase RalA targets filamin to induce filopodia. Proc. Natl. Acad. Sci. USA 96, 2122–2128
    OpenUrlAbstract/FREE Full Text
    1. Prehoda, K. E.,
    2. Scott, J. A.,
    3. Mullins, R. D. and
    4. Lim, W. A.
    (2000). Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806
    OpenUrlAbstract/FREE Full Text
    1. Qualmann, B.,
    2. Roos, J.,
    3. DiGregorio, P. J. and
    4. Kelly, R. B.
    (1999). Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513
    OpenUrlAbstract/FREE Full Text
    1. Qualmann, B.,
    2. Kessels, M. M. and
    3. Kelly, R. B.
    (2000). Molecular links between endocytosis and the actin cytoskeleton. J. Cell. Biol 150, 111–116
    OpenUrlCrossRef
    1. Ramesh, N.,
    2. Anton, I. M.,
    3. Hartwig, J. H. and
    4. Geha, R. S.
    (1997). WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl. Acad. Sci. USA 94, 14671–14676
    OpenUrlAbstract/FREE Full Text
    1. Rivero-Lezcano, O. M.,
    2. Marcilla, A.,
    3. Sameshima, J. H. and
    4. Robbins, K. C.
    (1995). Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol. Cell. Biol 15, 5725–5731
    OpenUrlAbstract/FREE Full Text
    1. Rohatgi, R.,
    2. Ma, L.,
    3. Miki, H.,
    4. Lopez, M.,
    5. Kirchhausen, T.,
    6. Takenawa, T. and
    7. Kirschner, M. W.
    (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231
    OpenUrlCrossRefPubMedWeb of Science
    1. Rohatgi, R.,
    2. Ho, H.-H. and
    3. Kirscher, M. W.
    (2000). Mechanism of N-WASP activation by Cdc42 and phosphatidylinositol 4,5-bisphosphate. J. Cell. Biol 150, 1299–1309
    OpenUrlAbstract/FREE Full Text
    1. Rozelle, A. L.,
    2. Machesky, L. M.,
    3. Yamamoto, M.,
    4. Driessens, M. H.,
    5. Insall, R. H.,
    6. Roth, M. G.,
    7. Luby-Phelps, K.,
    8. Marriott, G.,
    9. Hall, A. and
    10. Yin, H. L.
    (2000). Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol 10, 311–320
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasaki, N.,
    2. Miki, H. and
    3. Takenawa, T.
    (2000). Arp2/3 complex-independent actin regulatory function of WAVE. Biochem. Biophys. Res. Commun 272, 386–390
    OpenUrlCrossRefPubMedWeb of Science
    1. She, H. Y.,
    2. Rockow, S.,
    3. Tang, J.,
    4. Nishimura, R.,
    5. Skolnik, E. Y.,
    6. Chen, M.,
    7. Margolis, B. and
    8. Li, W.
    (1997). Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells. Mol. Biol. Cell 8, 1709–1721
    OpenUrlAbstract/FREE Full Text
    1. Smith, G. A.,
    2. Theriot, J. A. and
    3. Portnoy, D. A.
    (1996). The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol 135, 647–660
    OpenUrlAbstract/FREE Full Text
    1. Suetsugu, S.,
    2. Miki, H. and
    3. Takenawa, T.
    (1998). The essential role of profilin in the assembly of actin for microspike formation. EMBO J 17, 6516–6526
    OpenUrlAbstract
    1. Suetsugu, S.,
    2. Miki, H. and
    3. Takenawa, T.
    (1999). Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem. Biophys. Res. Commun 260, 296–302
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki, T.,
    2. Miki, H.,
    3. Takenawa, T. and
    4. Sasakawa, C.
    (1998). Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J 17, 2767–2776
    OpenUrlAbstract/FREE Full Text
    1. Suzuki, T.,
    2. Mimuro, H.,
    3. Miki, H.,
    4. Takenawa, T.,
    5. Sasaki, T.,
    6. Nakanishi, H.,
    7. Takai, Y. and
    8. Sasakawa, C.
    (2000). Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J. Exp. Med 191, 1905–1920
    OpenUrlAbstract/FREE Full Text
    1. Svitkina, T. M. and
    2. Borisy, G. G.
    (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendric organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol 145, 1009–1026
    OpenUrlAbstract/FREE Full Text
    1. Symons, M.,
    2. Derry, J. M.,
    3. Karlak, B.,
    4. Jiang, S.,
    5. Lemahieu, V.,
    6. McCormick, F.,
    7. Francke, U. and
    8. Abo, A.
    (1996). Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723–734
    OpenUrlCrossRefPubMedWeb of Science
    1. Taunton, J.,
    2. Rowning, B. A.,
    3. Coughlin, M. L.,
    4. Wu, M.,
    5. Moon, R. T.,
    6. Mitchison, T. J. and
    7. Larabell, C. A.
    (2000). Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol 148, 519–530
    OpenUrlAbstract/FREE Full Text
    1. Welch, M. D.,
    2. Iwamatsu, A. and
    3. Mitchison, T. J.
    (1997). Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Welch, M. D.,
    2. Rosenblatt, J.,
    3. Skoble, J.,
    4. Portnoy, D. A. and
    5. Mitchison, T. J.
    (1998). Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108
    OpenUrlAbstract/FREE Full Text
    1. Westphal, R. S.,
    2. Soderling, S. H.,
    3. Alto, N. M.,
    4. Langeberg, L. K. and
    5. Scott, J. D.
    (2000). Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J 19, 4589–4600
    OpenUrlAbstract
    1. Winter, D.,
    2. Lechler, T. and
    3. Li, R.
    (1999). Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr. Biol 9, 501–504
    OpenUrlCrossRefPubMedWeb of Science
    1. Wu, Y.,
    2. Spencer, S. D. and
    3. Lasky, L. A.
    (1998). Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J. Biol. Chem 273, 5765–5770
    OpenUrlAbstract/FREE Full Text
    1. Yamaguchi, H.,
    2. Miki, H.,
    3. Suetsugu, S.,
    4. Ma, L.,
    5. Kirschner, M. W. and
    6. Takenawa, T.
    (2000). Two tandem verprolin homology domains are necessary for a strong activation of Arp2/3 complex-induced actin polymerization and induction of microspike formation by N-WASP. Proc. Natl. Acad. Sci. USA 97, 12631–12636
    OpenUrlAbstract/FREE Full Text
    1. Yang, C.,
    2. Huang, M.,
    3. DeBiasio, J.,
    4. Pring, M.,
    5. Joyce, M.,
    6. Miki, H.,
    7. Takenawa, T. and
    8. Zigmond, S. H.
    (2000). Profilin enhances Cdc42-induced nucleation of actin polymerization. J. Cell Biol 150, 1001–1012
    OpenUrlAbstract/FREE Full Text
    1. Yarar, D.,
    2. To, W.,
    3. Abo, A. and
    4. Welch, M. D.
    (1999). The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol 9, 555–558
    OpenUrlCrossRefPubMedWeb of Science
    1. Yeh, T. C.,
    2. Ogawa, W.,
    3. Danielsen, A. G. and
    4. Roth, R. A.
    (1996). Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J. Biol. Chem 271, 2921–2928
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement
T. Takenawa, H. Miki
Journal of Cell Science 2001 114: 1801-1809;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement
T. Takenawa, H. Miki
Journal of Cell Science 2001 114: 1801-1809;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae
  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • A nuclear tale of two yeasts
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Introducing FocalPlane’s new Community Manager, Esperanza Agullo-Pascual

We are pleased to welcome Esperanza to the Journal of Cell Science team. The new Community Manager for FocalPlane, Esperanza is joining us from the Microscopy Core at Mount Sinai School of Medicine. Find out more about Esperanza in her introductory post over on FocalPlane.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

"Alongside pre-printing for early documentation of work, such mechanisms are particularly helpful for early-career researchers like me.”

Dr Chris MacDonald (University of York) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Cell scientist to watch: Romain Levayer

In an interview, Romain Levayer talks about starting his own lab, his love for preprints and his experience of balancing parenting with his research goals.


Live lactating mammary tissue

In a stunning video, Stewart et al. demonstrate warping of the alveolar unit due to basal cell-generated force as part of their recent work investigating roles for mechanically activated ion channels in lactation and involution.

Visit our YouTube channel to watch more videos from JCS, our sister journals and the Company.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992