Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Search, capture and signal: games microtubules and centrosomes play
S.C. Schuyler, D. Pellman
Journal of Cell Science 2001 114: 247-255;
S.C. Schuyler
Department of Pediatric Oncology, The Dana-Farber Cancer Institute and Pediatric Hematology, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: schuyler@fas.harvard.edu
D. Pellman
Department of Pediatric Oncology, The Dana-Farber Cancer Institute and Pediatric Hematology, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: schuyler@fas.harvard.edu
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Accurate distribution of the chromosomes in dividing cells requires coupling of cellular polarity cues with both the orientation of the mitotic spindle and cell cycle progression. Work in budding yeast has demonstrated that cytoplasmic dynein and the kinesin Kip3p define redundant pathways that ensure proper spindle orientation. Furthermore, it has been shown that the Kip3p pathway components Kar9p and Bim1p (Yeb1p) form a complex that provides a molecular link between cortical polarity cues and spindle microtubules. Recently, other studies indicated that the cortical localization of Kar9p depends upon actin cables and Myo2p, a type V myosin. In addition, a BUB2-dependent cell cycle checkpoint has been described that inhibits the mitotic exit network and cytokinesis until proper centrosome position is achieved. Combined, these studies provide molecular insight into how cells link cellular polarity, spindle position and cell cycle progression.

  • © 2001 by Company of Biologists

REFERENCES

    1. Adames, N. R. and
    2. Cooper, J. A.
    (2000). Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol 149, 863–874
    OpenUrlAbstract/FREE Full Text
    1. Aist, J. R. and
    2. Berns, M. W.
    (1981). Mechanics of chromosome separation during mitosis in Fusarium (Fungi imperfecti): new evidence from ultrastructural and laser microbeam experiments. J. Cell Biol 128, 617–624
    OpenUrl
    1. Aist, J. R.,
    2. Bayles, C. J.,
    3. Tao, W. and
    4. Berns, M. W.
    (1991). Direct experimental evidence for the existence, structural basis and function of astral forces during anaphase B in vivo. J. Cell Sci 100, 279–288
    OpenUrlAbstract/FREE Full Text
    1. Alexandru, G.,
    2. Zachariae, W.,
    3. Schleiffer, A. and
    4. Nasmyth, K.
    (1999). Sister chromatid separation and chromosome-duplication are regulated by different mechanisms in response to spindle damage. EMBO J 18, 2701–2721
    OpenUrl
    1. Askham, J. M.,
    2. Moncur, P.,
    3. Markham, A. F. and
    4. Morrison, E. E.
    (2000). Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene 19, 1950–1958
    OpenUrlCrossRefPubMedWeb of Science
    1. Baas, P. W.
    (1999). Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31
    OpenUrlCrossRefPubMedWeb of Science
    1. Balasubramanian, M. K.,
    2. McCollum, D. and
    3. Surana, U.
    (2000). Tying the knot: linking cytokinesis to the nuclear cycle. J. Cell Sci 113, 1503–1513
    OpenUrlAbstract/FREE Full Text
    1. Bardin, A. J.,
    2. Visintin, R. and
    3. Amon, A.
    (2000). A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102, 21–31
    OpenUrlCrossRefPubMedWeb of Science
    1. Beinhauer, J. D.,
    2. Hagan, I. M.,
    3. Hegemann, J. H. and
    4. Fleig, U.
    (1997). Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol 139, 717–728
    OpenUrlAbstract/FREE Full Text
    1. Berlin, V.,
    2. Styles, C. A. and
    3. Fink, G. R.
    (1990). BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J. Cell Biol 111, 2573–2586
    OpenUrlAbstract/FREE Full Text
    1. Berrueta, L.,
    2. Kraeft, S. K.,
    3. Tirnauer, J. S.,
    4. Schuyler, S. C.,
    5. Chen, L. B.,
    6. Hill, D. E.,
    7. Pellman, D. and
    8. Bierer, B. E.
    (1998). The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc. Nat. Acad. Sci. USA 95, 10596–10601
    OpenUrlAbstract/FREE Full Text
    1. Berrueta, L.,
    2. Tirnauer, J. S.,
    3. Schuyler, S. C.,
    4. Pellman, D. and
    5. Bierer, B. E.
    (1999). The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol 9, 425–428
    OpenUrlCrossRefPubMedWeb of Science
    1. Bloom, K. S.,
    2. Beach, D. L.,
    3. Maddox, P.,
    4. Shaw, S. L.,
    5. Yeh, E. and
    6. Salmon, E. D.
    (1999). Using green fluorescent protein fusion proteins to quantitate microtubule and spindle dynamics in budding yeast. Meth. Cell Biol 61, 369–383
    OpenUrlPubMedWeb of Science
    1. Brunner, D. and
    2. Nurse, P.
    (2000). CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704
    OpenUrlCrossRefPubMedWeb of Science
    1. Byers, B. and
    2. Goetsch, L.
    (1975). Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J. Bacteriol 124, 511–523
    OpenUrlAbstract/FREE Full Text
    1. Cahill, D. P.,
    2. Lengauer, C.,
    3. Yu, J.,
    4. Riggins, G. J.,
    5. Willson, J. K.,
    6. Markowitz, S. D.,
    7. Kinzler, K. W. and
    8. Vogelstein, B.
    (1998). Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303
    OpenUrlCrossRefPubMedWeb of Science
    1. Carminati, J. L. and
    2. Stearns, T.
    (1997). Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol 138, 629–641
    OpenUrlAbstract/FREE Full Text
    1. Cerutti, L. and
    2. Simanis, V.
    (1999). Asymmetry of the spindle pole bodies and spg1p GAP segregation during mitosis in fission yeast. J. Cell Sci 112, 2313–2321
    OpenUrlAbstract/FREE Full Text
    1. Chant, J.
    (1999). Cell polarity in yeast. Annu. Rev. Cell Dev. Biol 15, 365–391
    OpenUrlCrossRefPubMedWeb of Science
    1. Clark, S. W. and
    2. Meyer, D. I.
    (1994). ACT3: a putative centractin homologue in Saccharomyces cerevisiae required for proper orientation of the mitotic spindle. J. Cell Biol 127, 129–138
    OpenUrlAbstract/FREE Full Text
    1. Cottingham, F. R. and
    2. Hoyt, M. A.
    (1997). Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J. Cell Biol 138, 1041–1053
    OpenUrlAbstract/FREE Full Text
    1. Deng, W. and
    2. Lin, H.
    (1997). Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev. Biol 189, 79–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Desai, A. and
    2. Mitchison, T. J.
    (1997). Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol 13, 83–117
    OpenUrlCrossRefPubMedWeb of Science
    1. DeZwaan, T. M.,
    2. Ellingson, E.,
    3. Pellman, D. and
    4. Roof, D. M.
    (1997). Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J. Cell Biol 138, 1023–1040
    OpenUrlAbstract/FREE Full Text
    1. Dick, T.,
    2. Surana, U. and
    3. Chia, W.
    (1996). Molecular and genetic characterization of SLC1, a putative Saccharomyces cerevisiae homolog of the metazoan cytoplasmic dynein light chain 1. Mol. Gen. Genet 251, 38–43
    OpenUrlPubMedWeb of Science
    1. Dobles, M.,
    2. Liberal, V.,
    3. Scott, M. L.,
    4. Benezra, R. and
    5. Sorger, P. K.
    (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645
    OpenUrlCrossRefPubMedWeb of Science
    1. Drubin, D. G. and
    2. Nelson, W. J.
    (1996). Origins of cell polarity. Cell 84, 335–355
    OpenUrlCrossRefPubMedWeb of Science
    1. Drummond, D. R. and
    2. Cross, R. A.
    (2000). Dynamics of interphase microtubules in Schizosaccharomyces pombe. Curr. Biol 10, 766–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Eshel, D.,
    2. Urrestarazu, L. A.,
    3. Vissers, S.,
    4. Jauniaux, J. C.,
    5. Van Vliet-Reedijk, J. C.,
    6. Planta, R. J. and
    7. Gibbons, I. R.
    (1993). Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc. Nat. Acad. Sci. USA 90, 11172–11176
    OpenUrlAbstract/FREE Full Text
    1. Fesquet, D.,
    2. Fitzpatrick, P. J.,
    3. Johnson, A. L.,
    4. Kramer, K. M.,
    5. Toyn, J. H. and
    6. Johnston, L. H.
    (1999). A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. EMBO J 18, 2424–2434
    OpenUrlAbstract
    1. Fraschini, R.,
    2. Formenti, E.,
    3. Lucchini, G. and
    4. Piatti, S.
    (1999). Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J. Cell Biol 145, 979–991
    OpenUrlAbstract/FREE Full Text
    1. Fuchs, E. and
    2. Yang, Y.
    (1999). Crossroads on cytoskeletal highways. Cell 98, 547–550
    OpenUrlCrossRefPubMedWeb of Science
    1. Fujiwara, T.,
    2. Tanaka, K.,
    3. Inoue, E.,
    4. Kikyo, M. and
    5. Takai, Y.
    (1999). Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Cell Biol 19, 8016–8027
    OpenUrlAbstract/FREE Full Text
    1. Furge, K. A.,
    2. Wong, K.,
    3. Armstrong, J.,
    4. Balasubramanian, M. and
    5. Albright, C. F.
    (1998). Byr4 and Cdc16 form a two-component GTPase-activating protein for the Spg1 GTPase that controls septation in fission yeast. Curr. Biol 8, 947–954
    OpenUrlCrossRefPubMedWeb of Science
    1. Gavin, R. H.
    (1997). Microtubule-microfilament synergy in the cytoskeleton. Int. Rev. Cytol 173, 207–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldstein, L. S. and
    2. Philip, A. V.
    (1999). The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol 15, 141–183
    OpenUrlCrossRefPubMedWeb of Science
    1. Gonczy, P.,
    2. Pichler, S.,
    3. Kirkham, M. and
    4. Hyman, A. A.
    (1999). Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol 147, 135–150
    OpenUrlAbstract/FREE Full Text
    1. Goode, B. L.,
    2. Drubin, D. G. and
    3. Barnes, G.
    (2000). Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol 12, 63–71
    OpenUrlCrossRefPubMedWeb of Science
    1. Guertin, D. A.,
    2. Chang, L.,
    3. Irshad, F.,
    4. Gould, K. L. and
    5. McCollum, D.
    (2000). The role of the Sid1p kinase and Cdc14p in regulating the onset of cytokinesis in fission yeast. EMBO J 19, 1803–1815
    OpenUrlAbstract/FREE Full Text
    1. Heald, R.
    (2000). Motor function in the mitotic spindle. Cell 102, 399–402
    OpenUrlCrossRefPubMedWeb of Science
    1. Heil-Chapdelaine, R. A.,
    2. Adames, N. R. and
    3. Cooper, J. A.
    (1999). Formin' the connection between microtubules and the cell cortex. J. Cell Biol 144, 809–811
    OpenUrlFREE Full Text
    1. Hildebrandt, E. R. and
    2. Hoyt, M. A.
    (2000). Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1496, 99–116
    OpenUrlCrossRefPubMedWeb of Science
    1. Hiraoka, Y.,
    2. Ding, D. Q.,
    3. Yamamoto, A.,
    4. Tsutsumi, C. and
    5. Chikashige, Y.
    (2000). Characterization of fission yeast meiotic mutants based on live observation of meiotic prophase nuclear movement. Chromosoma 109, 103–109
    OpenUrlCrossRefPubMedWeb of Science
    1. Holy, T. E. and
    2. Leibler, S.
    (1994). Dynamic instability of microtubules as an efficient way to search in space. Proc. Nat. Acad. Sci. USA 91, 5682–5685
    OpenUrlAbstract/FREE Full Text
    1. Hoyt, M. A.,
    2. Totis, L. and
    3. Roberts, B. T.
    (1991). Saccharomyces cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517
    OpenUrlCrossRefPubMedWeb of Science
    1. Hoyt, M. A.
    (2000). Exit from mitosis: spindle pole power. Cell 102, 267–270
    OpenUrlCrossRefPubMedWeb of Science
    1. Hyman, A. A. and
    2. White, J. G.
    (1987). Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol 105, 2123–2135
    OpenUrlAbstract/FREE Full Text
    1. Hyman, A. A.
    (1989). Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol 109, 1185–1193
    OpenUrlAbstract/FREE Full Text
    1. Hyman, A. A. and
    2. Karsenti, E.
    (1998). The role of nucleation in patterning microtubule networks. J. Cell Sci 111, 2077–2083
    OpenUrlAbstract/FREE Full Text
    1. Inoue, S. and
    2. Salmon, E. D.
    (1995). Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640
    OpenUrlAbstract/FREE Full Text
    1. Inoue, S.,
    2. Turgeon, B. G.,
    3. Yoder, O. C. and
    4. Aist, J. R.
    (1998). Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration. J. Cell Sci 111, 1555–1566
    OpenUrlAbstract/FREE Full Text
    1. Iseto, T. and
    2. Nishida, H.
    (1999). Ultrastructural studies on the centrosome-attracting body: Electron-dense matrix and its role in unequal cleavages in ascidian embryos. Dev. Growth Differ 41, 601–609
    OpenUrlCrossRefPubMedWeb of Science
    1. Jan, Y.-N. and
    2. Jan, L. Y.
    (2000). Polarity in cell division: what frames thy fearful asymmetry?. Cell 100, 599–602
    OpenUrlCrossRefPubMedWeb of Science
    1. Kahana, J. A.,
    2. Schlenstedt, G.,
    3. Evanchuk, D. M.,
    4. Geiser, J. R.,
    5. Hoyt, M. A. and
    6. Silver, P. A.
    (1998). The yeast dynactin complex is involved in partitioning the mitotic spindle between mother and daughter cells during anaphase B. Mol. Biol. Cell 9, 1741–1756
    OpenUrlAbstract/FREE Full Text
    1. Kalitsis, P.,
    2. Earle, E.,
    3. Fowler, K. J. and
    4. Choo, K. H. A.
    (2000). Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 14, 2277–2282
    OpenUrlAbstract/FREE Full Text
    1. Kaverina, I.,
    2. Rottner, K. and
    3. Small, J. V.
    (1998). Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol 142, 181–190
    OpenUrlAbstract/FREE Full Text
    1. Kellogg, D. R.,
    2. Moritz, M. and
    3. Alberts, B. M.
    (1994). The centrosome and cellular organization. Annu. Rev. Biochem 63, 639–674
    OpenUrlCrossRefPubMedWeb of Science
    1. Kinzler, K. W. and
    2. Vogelstein, B.
    (1996). Lessons from hereditary colorectal cancer. Cell 87, 159–170
    OpenUrlCrossRefPubMedWeb of Science
    1. Kirschner, M. and
    2. Mitchison, T. J.
    (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342
    OpenUrlCrossRefPubMedWeb of Science
    1. Kirschner, M.,
    2. Gerhart, J. and
    3. Mitchison, T.
    (2000). Molecular ‘vitalism’. Cell 100, 79–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Koonce, M. P.,
    2. Kohler, J.,
    3. Neujahr, R.,
    4. Schwartz, J. M.,
    5. Tikhonenko, I. and
    6. Gerisch, G.
    (1999). Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBOJ 18, 6786–6792
    OpenUrlAbstract/FREE Full Text
    1. Kopecka, M. and
    2. Gabriel, M.
    (1998). The aberrant positioning of nuclei and the microtubular cytoskeleton in Saccharomyces cerevisiae due to improper actin function. Microbiology 144, 1783–1797
    OpenUrlCrossRefPubMedWeb of Science
    1. Korinek, W. S.,
    2. Copeland, M. J.,
    3. Chaudhuri, A. and
    4. Chant, J.
    (2000). Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259
    OpenUrlAbstract/FREE Full Text
    1. Kurihara, L. J.,
    2. Beh, C. T.,
    3. Latterich, M.,
    4. Schekman, R. and
    5. Rose, M. D.
    (1994). Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway. J. Cell Biol 126, 911–923
    OpenUrlAbstract/FREE Full Text
    1. Lee, L.,
    2. Klee, S. K.,
    3. Evangelista, M.,
    4. Boone, C. and
    5. Pellman, D.
    (1999). Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol 144, 947–961
    OpenUrlAbstract/FREE Full Text
    1. Lee, L.,
    2. Tirnauer, J. S.,
    3. Li, J.,
    4. Schuyler, S. C.,
    5. Liu, J. Y. and
    6. Pellman, D.
    (2000). Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262
    OpenUrlAbstract/FREE Full Text
    1. Li, R.
    (1999). Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Nat. Acad. Sci. USA 96, 4989–4994
    OpenUrlAbstract/FREE Full Text
    1. Li, Y.-Y.,
    2. Yeh, E.,
    3. Hays, T. and
    4. Bloom, K.
    (1993). Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Nat. Acad. Sci. USA 90, 10096–10100
    OpenUrlAbstract/FREE Full Text
    1. McGrail, M. and
    2. Hays, T. S.
    (1997). The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419
    OpenUrlAbstract
    1. McMillan, J. N. and
    2. Tatchell, K.
    (1994). The JNM1 gene in the yeast Saccharomyces cerevisiae is required for nuclear migration and spindle orientation during the mitotic cell cycle. J. Cell Biol 125, 143–158
    OpenUrlAbstract/FREE Full Text
    1. McMillan, J. N.,
    2. Sia, R. A. L. and
    3. Lew, D. J.
    (1998). A morphogenesis checkpoint monitors the actin cytoskeleton in yeast. J. Cell Biol 142, 1487–1499
    OpenUrlAbstract/FREE Full Text
    1. Miller, R. K. and
    2. Rose, M. D.
    (1998). Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol 140, 377–390
    OpenUrlAbstract/FREE Full Text
    1. Miller, R. K.,
    2. Heller, K. K.,
    3. Frisen, L.,
    4. Wallack, D. L.,
    5. Loayza, D.,
    6. Gammie, A. E. and
    7. Rose, M. D.
    (1998). The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9, 2051–2068
    OpenUrlAbstract/FREE Full Text
    1. Miller, R. K.,
    2. Matheos, D. and
    3. Rose, M. D.
    (1999). The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol 144, 963–975
    OpenUrlAbstract/FREE Full Text
    1. Miller, R. K.,
    2. Cheng, S. C. and
    3. Rose, M. D.
    (2000). Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of microtubules. Mol. Biol. Cell 11, 2949–2959
    OpenUrlAbstract/FREE Full Text
    1. Mimori-Kiyosue, Y.,
    2. Shiina, N. and
    3. Tsukita, S.
    (2000). The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol 10, 865–868
    OpenUrlCrossRefPubMedWeb of Science
    1. Mimori-Kiyosue, Y.,
    2. Shiina, N. and
    3. Tsukita, S.
    (2000). Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol 148, 505–518
    OpenUrlAbstract/FREE Full Text
    1. Mitchison, T. J. and
    2. Kirschner, M.
    (1985). Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J. Cell Biol 101, 766–777
    OpenUrlAbstract/FREE Full Text
    1. Morrison, E. E.,
    2. Wardleworth, B. N.,
    3. Askham, J. M.,
    4. Markham, A. F. and
    5. Meredith, D. M.
    (1998). EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17, 3471–3477
    OpenUrlCrossRefPubMedWeb of Science
    1. Muhua, L.,
    2. Karpova, T. S. and
    3. Cooper, J. A.
    (1994). A yeast actin-related protein homologous to that in vertebrate dynactin complex is important for spindle orientation and nuclear migration. Cell 78, 669–679
    OpenUrlCrossRefPubMedWeb of Science
    1. Muhua, L.,
    2. Adames, N. R.,
    3. Murphy, M. D.,
    4. Sheilds, C. R. and
    5. Cooper, J. A.
    (1998). A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 393, 487–491
    OpenUrlCrossRefPubMed
    1. Nishitaka, T.,
    2. Hibino, T. and
    3. Nishida, H.
    (1999). The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev. Biol 209, 72–85
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Connell, C. B. and
    2. Wang, Y. L.
    (2000). Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765–1774
    OpenUrlAbstract/FREE Full Text
    1. Palmer, R. E.,
    2. Sullivan, D. S.,
    3. Huffaker, T. and
    4. Koshland, D.
    (1992). Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol 119, 583–593
    OpenUrlAbstract/FREE Full Text
    1. Pereira, G.,
    2. Höfken, T.,
    3. Grindlay, J.,
    4. Manson, C. and
    5. Schiebel, E.
    (2000). The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol. Cell 6, 1–10
    OpenUrlCrossRefPubMedWeb of Science
    1. Perez, F.,
    2. Diamantopoulos, G. S.,
    3. Stalder, R. and
    4. Kreis, T. E.
    (1999). CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527
    OpenUrlCrossRefPubMedWeb of Science
    1. Plamann, M.,
    2. Minke, P. F.,
    3. Tinsley, J. H. and
    4. Bruno, K. S.
    (1994). Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J. Cell Biol 127, 139–149
    OpenUrlAbstract/FREE Full Text
    1. Pruyne, D. and
    2. Bretscher, A.
    (2000). Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci 113, 365–375
    OpenUrlAbstract/FREE Full Text
    1. Pruyne, D. and
    2. Bretscher, A.
    (2000). Polarization of cell growth in yeast. J. Cell Sci 113, 571–585
    OpenUrlAbstract/FREE Full Text
    1. Reinsch, S. and
    2. Gonczy, P.
    (1998). Mechanisms of nuclear positioning. J. Cell Sci 11, 2283–2295
    OpenUrl
    1. Rhyu, M. S. and
    2. Knoblich, J. A.
    (1995). Spindle orientation and asymmetric cell fate. Cell 82, 523–526
    OpenUrlCrossRefPubMedWeb of Science
    1. Richardson, P. M. and
    2. Zon, L. I.
    (1995). Molecular cloning of a cDNA with a novel domain present in the tre-2 oncogene and the yeast cell cycle regulators BUB2 and cdc16. Oncogene 11, 1139–1148
    OpenUrlPubMedWeb of Science
    1. Robinson, J. T.,
    2. Wojcik, E. J.,
    3. Sanders, M. A.,
    4. McGrail, M. and
    5. Hays, T. S.
    (1999). Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol 146, 597–608
    OpenUrlAbstract/FREE Full Text
    1. Rose, M. D.
    (1996). Nuclear fusion in the yeast Saccharomyces cerevisiae. Annu. Rev. Cell Dev. Biol 12, 663–695
    OpenUrlCrossRefPubMedWeb of Science
    1. Saunders, W. S.,
    2. Koshland, D.,
    3. Eshel, D.,
    4. Gibbons, I. R. and
    5. Hoyt, M. A.
    (1995). Saccharomyces cerevisiae kinesin-and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol 128, 617–624
    OpenUrlAbstract/FREE Full Text
    1. Schmidt, S.,
    2. Sohrmann, M.,
    3. Hofmann, K.,
    4. Woolard, A. and
    5. Simanis, V.
    (1997). The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe. Genes Dev 11, 1519–1534
    OpenUrlAbstract/FREE Full Text
    1. Schwartz, K.,
    2. Richards, K. and
    3. Botstein, D.
    (1997). BIM1 encodes a microtubule-binding protein in yeast. Mol. Biol. Cell 8, 2677–2691
    OpenUrlAbstract/FREE Full Text
    1. Sharp, D. J.,
    2. Rogers, G. C. and
    3. Scholey, J. M.
    (2000). Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design. Biochim. Biophys. Acta 1496, 128–141
    OpenUrlPubMedWeb of Science
    1. Shaw, S. L.,
    2. Yeh, E.,
    3. Maddox, P.,
    4. Salmon, E. D. and
    5. Bloom, K.
    (1997). Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol 139, 985–994
    OpenUrlAbstract/FREE Full Text
    1. Shaw, S. L.,
    2. Maddox, P.,
    3. Skibbens, R. V.,
    4. Yeh, E.,
    5. Salmon, E. D. and
    6. Bloom, K.
    (1998). Nuclear and spindle dynamics in budding yeast. Mol Biol Cell 9, 1627–1631
    OpenUrlFREE Full Text
    1. Shirayama, M.,
    2. Matsui, Y. and
    3. Toh-e, A.
    (1994). The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase. Mol. Cell Biol 14, 7476–7482
    OpenUrlAbstract/FREE Full Text
    1. Shirayama, M.,
    2. Matsui, Y.,
    3. Tanaka, K. and
    4. Toh-e, A.
    (1994). Isolation of a CDC25 family gene, MSI2/LTE1, as a multicopy suppressor of ira1. Yeast 10, 451–461
    OpenUrlCrossRefPubMedWeb of Science
    1. Skop, A. R. and
    2. White, J. G.
    (1998). The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol 8, 1110–1116
    OpenUrlCrossRefPubMedWeb of Science
    1. Stearns, T.
    (1997). Motoring to the finish: kinesin and dynein work together to orient the yeast mitotic spindle. J. Cell Biol 138, 957–960
    OpenUrlFREE Full Text
    1. Su, L. K.,
    2. Burrell, M.,
    3. Hill, D. E.,
    4. Gyuris, J.,
    5. Brent, R.,
    6. Wiltshire, R.,
    7. Trent, J.,
    8. Vogelstein, B. and
    9. Kinzler, K. W.
    (1995). APC binds to the novel protein EB1. Cancer Res 55, 2972–2977
    OpenUrlAbstract/FREE Full Text
    1. Theesfeld, C. L.,
    2. Irazoqui, J. E.,
    3. Bloom, K. and
    4. Lew, D. J.
    (1999). The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J. Cell Biol 146, 1019–1032
    OpenUrlAbstract/FREE Full Text
    1. Tinsley, J. H.,
    2. Minke, P. F.,
    3. Bruno, K. S. and
    4. Plamann, M.
    (1996). p150Glued, the largest subunit of the dynactin complex, is nonessential in Neurospora but required for nuclear distribution. Mol. Biol. Cell 7, 731–742
    OpenUrlAbstract/FREE Full Text
    1. Tirnauer, J. S.,
    2. O'Toole, E.,
    3. Berrueta, L.,
    4. Bierer, B. E. and
    5. Pellman, D.
    (1999). Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol 145, 993–1007
    OpenUrlAbstract/FREE Full Text
    1. Tirnauer, J. S. and
    2. Bierer, B. E.
    (2000). EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol 149, 761–766
    OpenUrlFREE Full Text
    1. Vaisberg, E. A.,
    2. Koonce, M. P. and
    3. McIntosh, J. R.
    (1993). Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol 123, 849–858
    OpenUrlAbstract/FREE Full Text
    1. Vallen, E. A.,
    2. Scherson, T. Y.,
    3. Roberts, T.,
    4. van Zee, K. and
    5. Rose, M. D.
    (1992). Asymmetric mitotic segregation of the yeast spindle pole body. Cell 69, 505–515
    OpenUrlCrossRefPubMed
    1. Wadsworth, P.
    (1999). Regional regulation of microtubule dynamics in polarized, motile cells. Cell Motil. Cytoskeleton 42, 48–59
    OpenUrlCrossRefPubMed
    1. Wheatley, S. P.
    (1999). Updates on the mechanics and regulation of cytokinesis in animal cells. Cell Biol. Inter 23, 797–803
    OpenUrlCrossRefPubMed
    1. White, R. A.,
    2. Pasztor, L. M.,
    3. Richardson, P. M. and
    4. Zon, L. I.
    (2000). The gene encoding TBC1D1 with homology to the tre-2/USP6 oncogene, BUB2, and cdc16 maps to mouse chromosome 5 and human chromosome 4. Cytogenet. Cell Genet 89, 272–275
    OpenUrlCrossRefPubMed
    1. Xiang, X.,
    2. Beckwith, S. M. and
    3. Morris, N. R.
    (1994). Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Nat. Acad. Sci. USA 91, 2100–2104
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto, A.,
    2. West, R. R.,
    3. McIntosh, J. R. and
    4. Hiraoka, Y.
    (1999). A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J. Cell Biol 145, 1233–1249
    OpenUrlAbstract/FREE Full Text
    1. Yeh, E.,
    2. Yang, C.,
    3. Maddox, P.,
    4. Chin, E.,
    5. Salmon, E. D.,
    6. Lew, D. J. and
    7. Bloom, K.
    (2000). Dynamic positioning of mitotic spindles in yeast: role of mitotic motors and asymmetric determinants. Mol. Biol. Cell 11, 3949–3961
    OpenUrlAbstract/FREE Full Text
    1. Yin, H.,
    2. Pruyne, D.,
    3. Huffaker, T. C. and
    4. Bretscher, A.
    (2000). Myosin V orients the mitotic spindle in yeast. Nature 406, 1013–1015
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Search, capture and signal: games microtubules and centrosomes play
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Search, capture and signal: games microtubules and centrosomes play
S.C. Schuyler, D. Pellman
Journal of Cell Science 2001 114: 247-255;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Search, capture and signal: games microtubules and centrosomes play
S.C. Schuyler, D. Pellman
Journal of Cell Science 2001 114: 247-255;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • The cytoplasmic fate of mRNA
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992