Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases
D.A. Davy, H.D. Campbell, S. Fountain, D. de Jong, M.F. Crouch
Journal of Cell Science 2001 114: 549-562;
D.A. Davy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.D. Campbell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Fountain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. de Jong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.F. Crouch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The flightless I protein contains an actin-binding domain with homology to the gelsolin family and is likely to be involved in actin cytoskeletal rearrangements. It has been suggested that this protein is involved in linking the cytoskeletal network with signal transduction pathways. We have developed antibodies directed toward the leucine rich repeat and gelsolin-like domains of the human and mouse homologues of flightless I that specifically recognize expressed and endogenous forms of the protein. We have also constructed a flightless I-enhanced green fluorescent fusion vector and used this to examine the localization of the expressed protein in Swiss 3T3 fibroblasts. The flightless I protein localizes predominantly to the nucleus and translocates to the cytoplasm following serum stimulation. In cells stimulated to migrate, the flightless I protein colocalizes with beta-tubulin- and actin-based structures. Members of the small GTPase family, also implicated in cytoskeletal control, were found to colocalize with flightless I in migrating Swiss 3T3 fibroblasts. LY294002, a specific inhibitor of PI 3-kinase, inhibits the translocation of flightless I to actin-based structures. Our results suggest that PI 3-kinase and the small GTPases, Ras, RhoA and Cdc42 may be part of a common functional pathway involved in Fliih-mediated cytoskeletal regulation. Functionally, we suggest that flightless I may act to prepare actin filaments or provide factors required for cytoskeletal rearrangements necessary for cell migration and/or adhesion.

  • © 2001 by Company of Biologists

REFERENCES

    1. Allen, W. E.,
    2. Jones, G. E.,
    3. Pollard, J. W. and
    4. Ridley, A. J.
    (1997). Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci 110, 707–720
    OpenUrlAbstract/FREE Full Text
    1. Arora, P. D. and
    2. McCulloch, C. A. G.
    (1996). Dependence of fibroblast migration on actin severing activity of gelsolin. J. Biol. Chem 271, 20516–20523
    OpenUrlAbstract/FREE Full Text
    1. Aspenström, P.
    (1999). The Rho GTPases have multiple effects on the actin cytoskeleton. Exp. Cell Res 246, 20–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Azuma, T.,
    2. Witke, T.,
    3. Hartwig, J. H. and
    4. Kwiatkowski, D. J.
    (1998). Gelsolin is a downstream effector of rac for fibroblast activity. EMBO J 17, 1362–1370
    OpenUrlAbstract
    1. Bar Sagi, D. and
    2. Feramisco, J. R.
    (1986). Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by Ras proteins. Science 233, 1061–1068
    OpenUrlAbstract/FREE Full Text
    1. Bassell, G. J.,
    2. Singer, R. H. and
    3. Kosik, K. S.
    (1994). Association of poly(A) mRNA with microtubules in processes of cultured neurons. Neuron 12, 571–582
    OpenUrlCrossRefPubMedWeb of Science
    1. Bassell, G. J. and
    2. Singer, R. H.
    (1997). mRNA and cytoskeletal filaments. Curr. Opin. Cell Biol 9, 109–115
    OpenUrlCrossRefPubMedWeb of Science
    1. Belkowski, S. M.,
    2. Levine, J. E. and
    3. Prystowsky, M. B.
    (1999). Requirement of PI3-kinase activity for the nuclear transport of prolactin in cloned murine T lymphocytes. J. Neuroimmunol 94, 40–47
    OpenUrlCrossRefPubMedWeb of Science
    1. Berven, L. A.,
    2. Frew, I. J. and
    3. Crouch, M. F.
    (1999). Nitric oxide donors selectively potentiate thrombin-stimulated p70s6kactivity and morphological changes in Swiss 3T3 fibroblasts. Biochem. Biophys. Res. Commun 266, 352–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Campbell, H. D.,
    2. Schimansky, T.,
    3. Claudianos, C.,
    4. Ozsarac, N.,
    5. Kasprzak, A. B.,
    6. Cotsell, J. N.,
    7. Young, I. G.,
    8. de Couet, H. G. and
    9. Miklos, G. L. G.
    (1993). The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans. Proc. Nat. Acad. Sci. USA 90, 11386–11390
    OpenUrlAbstract/FREE Full Text
    1. Campbell, H. D.,
    2. Fountain, S.,
    3. Young, C. L.,
    4. Weitz, S.,
    5. Lichter, P. and
    6. Hoheisel, J. D.
    (2000). Fliih, the mouse homologue of Drosophila melanogaster flightless I gene; nucleotide sequence, chromosomal mapping and overlap with Llglh. DNA Seq 11, 29–40
    OpenUrlPubMed
    1. Chaponnier, C.,
    2. Janmey, P. A. and
    3. Yin, H. L.
    (1986). The actin filament-severing domain of plasma gelsolin. J. Cell Biol 103, 1473–1481
    OpenUrlAbstract/FREE Full Text
    1. Chen, W.,
    2. Chen, S.,
    3. Yap, S. F. and
    4. Lim, C.
    (1996). The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and Cdc42Ce at hypodermal cell boundaries during embryo elongation. J. Biol. Chem 271, 26362–26368
    OpenUrlAbstract/FREE Full Text
    1. Cheresh, D. A.,
    2. Leng, J. and
    3. Klemke, R. L.
    (1999). Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J. Cell Biol 146, 1107–1116
    OpenUrlAbstract/FREE Full Text
    1. Claudianos, C. and
    2. Campbell, H. D.
    (1995). The novel flightless-I gene brings together two gene families: actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction. Mol. Biol. Evol 12, 405–414
    OpenUrlAbstract
    1. Conrad, P. A.,
    2. Nederlof, M. A.,
    3. Herman, I. M. and
    4. Taylor, D. L.
    (1989). Correlated distribution of actin, myosin, and microtubules at the leading edge of migrating Swiss 3T3 fibroblasts. Cell Motil. Cytoskel 14, 527–543
    OpenUrlCrossRefPubMedWeb of Science
    1. Cooper, J. A. and
    2. Schafer, D. A.
    (2000). Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol 12, 97–103
    OpenUrlCrossRefPubMedWeb of Science
    1. Crawford, J. M.,
    2. Harden, N.,
    3. Leung, T.,
    4. Lim, L. and
    5. Kiehart, D. P.
    (1998). Cellularization in Drosophila melanogaster is disrupted by the inhibition of Rho activity and the activation of Cdc42 function. Dev. Biol 204, 151–164
    OpenUrlCrossRefPubMed
    1. Crouch, M. F. and
    2. Simson, L.
    (1997). The G-protein Giregulates mitosis but not DNA synthesis in growth factor-activated fibroblasts: a role for the nuclear translocation of Gi. FASEB J 11, 189–198
    OpenUrlAbstract
    1. Crouch, M. F.
    (1997). Regulation of thrombin-induced stress fibre formation in Swiss 3T3 fibroblasts by the 70-kDa S6 kinase. Biochem. Biophys. Res. Commun 233, 193–199
    OpenUrlCrossRefPubMedWeb of Science
    1. Davy, D. A.,
    2. Ball, E. E.,
    3. Matthaei, K. I.,
    4. Campbell, H. D. and
    5. Crouch, M. F.
    (2000). The flightless I protein localizes to actin-based structures during embryonic development. Immunol. Cell Biol 78, 423–429
    OpenUrlCrossRefPubMed
    1. Deak, I. I.,
    2. Bellamy, P. R.,
    3. Bienz, M.,
    4. Dubuis, Y.,
    5. Fenner, E.,
    6. Gollin, M.,
    7. Rahmi, A.,
    8. Ramp, T.,
    9. Reinhardt, C. A. and
    10. Cotton, B.
    (1982). Mutations affecting the indirect flight muscles of Drosophila melanogaster. J. Embryol. Exp. Morphol 69, 61–81
    OpenUrlPubMed
    1. Derman, M. P.,
    2. Toker, A.,
    3. Hartwig, J. H.,
    4. Spokes, K.,
    5. Falck, J. R.,
    6. Chen, C.-S.,
    7. Cantley, L. C. and
    8. Cantley, L. C.
    (1997). The lipid products of phosphoinositide 3-kinase increase cell motility through protein kinase C. J. Biol. Chem 272, 6465–6470
    OpenUrlAbstract/FREE Full Text
    1. Dingwall, C. and
    2. Laskey, R. A.
    (1992). The nuclear membrane. Science 258, 942–947
    OpenUrlAbstract/FREE Full Text
    1. Drubin, D. G. and
    2. Nelson, W. J.
    (1996). Origins of cell polarity. Cell 84, 335–344
    OpenUrlCrossRefPubMedWeb of Science
    1. Eaton, S.,
    2. Auvinen, P.,
    3. Luo, L.,
    4. Jun, Y. N. and
    5. Symons, K.
    (1995). Cdc42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium. J. Cell Biol 131, 151–164
    OpenUrlAbstract/FREE Full Text
    1. Faix, J.,
    2. Clougherty, K.,
    3. Konzok, A.,
    4. Mintert, U.,
    5. Murphy, J. T.,
    6. Albrecht, R. and
    7. Muhlbauer, B.
    (1998). The IQGAP-related protein DGAP1 interacts with rac and is involved in the modulation of the F-actin cytoskeleton and control of cell motility. J. Cell Sci 111, 3059–3071
    OpenUrlAbstract/FREE Full Text
    1. Fernandes, J. J.,
    2. Bate, M. and
    3. VijayRaghavan, K.
    (1991). Development of the indirect flight muscles of Drosophila. Development 113, 67–77
    OpenUrlAbstract
    1. Field, C. M.,
    2. Li, R. and
    3. Oegema, K.
    (1999). Cytokinesis in eukaryotes: a mechanistic comparison. Curr. Opin. Cell Biol 11, 68–80
    OpenUrlCrossRefPubMedWeb of Science
    1. Foe, V. E. and
    2. Alberts, B. M.
    (1983). Studies of nuclear and cytoplasmic behavior during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci 61, 31–70
    OpenUrlAbstract/FREE Full Text
    1. Fong, K. S. and
    2. de Couet, H. G.
    (1999). Novel proteins interacting with the leucine rich repeat domain of human flightless-I identified by the yeast two-hybrid system. Genomics 58, 146–157
    OpenUrlCrossRefPubMedWeb of Science
    1. Franze-Fernandez, M. T. and
    2. Pogo, A. O.
    (1971). Regulation of nucleolar DNA-dependent RNA polymerase by amino acids in Erlich ascites tumor cells. Proc. Nat. Acad. Sci. USA 68, 3040–3044
    OpenUrlAbstract/FREE Full Text
    1. Garcia-Bustos, J.,
    2. Heitman, J. and
    3. Hall, M. N.
    (1991). Nuclear protein localization. Biochim. Biophys. Acta 1071, 83–101
    OpenUrlPubMed
    1. Glotzer, M.
    (1997). The mechanism and control of cytokinesis. Curr. Opin. Cell Biol 9, 815–823
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldfarb, D. S.
    (1991). Shuttling proteins go both ways. Curr. Biol 1, 212–214
    OpenUrlCrossRefPubMed
    1. Goldsmith, P.,
    2. Gierschik, P.,
    3. Milligan, G.,
    4. Unson, C. G.,
    5. Vinitsky, R.,
    6. Malech, H. L. and
    7. Spiegel, A. M.
    (1987). Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J. Biol. Chem 262, 14683–14688
    OpenUrlAbstract/FREE Full Text
    1. Goshima, M.,
    2. Kariya, K.,
    3. Yamawaki-Kataoka, Y.,
    4. Okada, T.,
    5. Shibatohge, M.,
    6. Shima, F.,
    7. Fujimoto, E. and
    8. Kataoka, T.
    (1999). Characterization of a novel ras-binding protein Ce-fli-I comprising leucine-rich repeats and gelsolin-like domains. Biochem. Biophys. Res. Comm 257, 111–116
    OpenUrlCrossRefPubMed
    1. Hartwig, J. H. and
    2. Kwiatkowski, D. J.
    (1991). Actin-binding proteins. Curr. Opin. Cell Biol 3, 87–97
    OpenUrlCrossRefPubMed
    1. Hashimoto, C.,
    2. Hudson, K. L. and
    3. Anderson, K. V.
    (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269–279
    OpenUrlCrossRefPubMedWeb of Science
    1. Heath, J. P. and
    2. Holifield, B. F.
    (1993). On the mechanisms of cortical actin flow and its role in cytoskeletal organization of fibroblasts. Symp. Soc. Exp. Biol 47, 35–56
    OpenUrlPubMed
    1. Hill, K.,
    2. Welti, S.,
    3. Yu, J.,
    4. Murray, J. T.,
    5. Yip, S. C.,
    6. Condeelis, J. S.,
    7. Segall, J. E. and
    8. Backer, J. M.
    (2000). Specific requirement for the p85-p110alpha phosphatidylinositol 3-kinase during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J. Biol. Chem 275, 3741–3744
    OpenUrlAbstract/FREE Full Text
    1. Janmey, P. A.,
    2. Chaponnier, C.,
    3. Lind, S. E.,
    4. Zaner, K. S.,
    5. Stossel, T. P. and
    6. Yin, H. L.
    (1985). Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochem 24, 3714–3723
    OpenUrlCrossRefPubMed
    1. Janmey, P. A. and
    2. Stossel, T. P.
    (1987). Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325, 362–364
    OpenUrlCrossRefPubMedWeb of Science
    1. Janmey, P. A. and
    2. Stossel, T. P.
    (1989). Gelsolin-polyphosphoinositide interaction. Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group. J. Biol. Chem 264, 4825–4831
    OpenUrlAbstract/FREE Full Text
    1. Janmey, P. A.
    (1994). Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol 56, 169–191
    OpenUrlCrossRefPubMedWeb of Science
    1. Johanson, S. O.,
    2. Naccache, P. A. and
    3. Crouch, M. F.
    (1999). A p85 subunit-independent p110PI 3-kinase colocalizes with p70 S6 kinase on actin stress fibres and regulates thrombin-stimulated stress fibre formation in Swiss 3T3 cells. Exp. Cell Res 248, 223–233
    OpenUrlCrossRefPubMedWeb of Science
    1. Kajava, A. V.,
    2. Vassart, G. and
    3. Wodak, S. J.
    (1995). Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3, 867–877
    OpenUrlCrossRefPubMed
    1. Kislauskis, E. H.,
    2. Li, Z.,
    3. Singer, R. H. and
    4. Taneja, K. L.
    (1993). Isoform-specific 3-untranslated sequences sort -cardiac and-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J. Cell Biol 123, 165–172
    OpenUrlAbstract/FREE Full Text
    1. Klingenberg, O.,
    2. Wiedocha, A.,
    3. Citores, L. and
    4. Olsnes, S.
    (2000). Requirement of phosphatidylinositol 3-kinase activity for translocation of exogenousFGF to the cytosol and nucleus. J. Biol. Chem 275, 11972–11980
    OpenUrlAbstract/FREE Full Text
    1. Knowles, R. B.,
    2. Sabry, J. H.,
    3. Martone, M. A.,
    4. Ellisman, M. and
    5. Bassell, G. J.
    (1996). Translocation of RNA granules in living neurons. J. Neurosci 16, 7812–7820
    OpenUrlAbstract/FREE Full Text
    1. Kobe, B. and
    2. Deisenhofer, J.
    (1994). The leucine-rich repeat: a versatile binding motif. Trends. Biochem. Sci 19, 415–421
    OpenUrlCrossRefPubMedWeb of Science
    1. Kobe, B. and
    2. Deisenhofer, J.
    (1995). Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol 5, 416–.
    OpenUrl
    1. Kobe, B. and
    2. Deisenhofer, J.
    (1995). A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186
    OpenUrlCrossRefPubMedWeb of Science
    1. Kwiatkowski, D. J.,
    2. Stossel, T. P.,
    3. Orkin, S. H.,
    4. Mole, J. E.,
    5. Colten, H. R. and
    6. Yin, H. L.
    (1986). Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323, 455–458
    OpenUrlCrossRefPubMedWeb of Science
    1. Kwiatkowski, D. J.,
    2. Janmey, P. A. and
    3. Yin, H. L.
    (1989). Identification of critical functional and regulatory domains in gelsolin. J. Cell Biol 108, 1717–1726
    OpenUrlAbstract/FREE Full Text
    1. Lassing, I. and
    2. Lindberg, U.
    (1985). Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314, 472–474
    OpenUrlCrossRefPubMedWeb of Science
    1. Latham, V.,
    2. Kislauskis, E. H.,
    3. Singer, R. H. and
    4. Ross, A.
    (1994). -actin mRNA localization is regulated by signal transduction mechanisms. J Cell Biol 126, 1211–1219
    OpenUrlAbstract/FREE Full Text
    1. Lim, L.,
    2. Manser, E.,
    3. Leung, T. and
    4. Hall, C.
    (1996). Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signaling pathways. Eur. J. Biochem 242, 171–185
    OpenUrlPubMedWeb of Science
    1. Lind, S. E.,
    2. Janmey, P. A.,
    3. Chaponnier, C.,
    4. Herbert, T. J. and
    5. Stossel, T. P.
    (1987). Reversible binding of actin to gelsolin and profilin in human platelet extracts. J. Cell Biol 105, 833–842
    OpenUrlAbstract/FREE Full Text
    1. Liu, Y.-T. and
    2. Yin, H. L.
    (1998). Identification of the binding partners for flightless I, a novel protein bridging the leucine-rich repeat and the gelsolin superfamilies. J. Biol. Chem 273, 7920–7927
    OpenUrlAbstract/FREE Full Text
    1. Loncar, D. and
    2. Singer, S. J.
    (1995). Cell membrane formation during the cellularization of the syncytial blastoderm of Drosophila. Proc. Nat. Acad. Sci. USA 92, 2199–2203
    OpenUrlAbstract/FREE Full Text
    1. Lu, P.-J.,
    2. Shieh, W.-U.,
    3. Rhee, S. G.,
    4. Yin, H. L. and
    5. Chen, C.-S.
    (1996). Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity. Biochemistry 35, 14027–14034
    OpenUrlCrossRefPubMed
    1. Ma, A. D.,
    2. Metjian, A.,
    3. Bagrodia, S.,
    4. Taylor, S. and
    5. Abrams, C. S.
    (1998). Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase gamma, a Rac guanosine exchange factor, and Rac. Mol. Cell. Biol 18, 4744–4751
    OpenUrlAbstract/FREE Full Text
    1. Ma, L.,
    2. Cantley, L. C.,
    3. Janmey, P. A. and
    4. Kirschner, M. W.
    (1998). Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol 140, 1125–1136
    OpenUrlAbstract/FREE Full Text
    1. Mallavarapu, A.
    (1999). Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol 146, 1097–1106
    OpenUrlAbstract/FREE Full Text
    1. Mandato, C. A.,
    2. Benink, H. A. and
    3. Bement, W. M.
    (2000). Microtubule-actomyosin interactions in cortical flow and cytokinesis. Cell Motil. Cytoskel 45, 87–92
    OpenUrlCrossRefPubMed
    1. Martin-Zanca, D.,
    2. Oskam, R.,
    3. Mitra, G.,
    4. Copeland, T. D. and
    5. Barbacid, M.
    (1989). Molecular and biochemical characterization of the human trk proto-oncogene. Mol. Cell. Biol 9, 24–33
    OpenUrlAbstract/FREE Full Text
    1. Matsuzaki, F.,
    2. Matsumoto, S.,
    3. Yahara, I.,
    4. Yonezawa, N.,
    5. Nishida, E. and
    6. Sakai, H.
    (1988). Cloning and characterization of porcine brain cofilin cDNA. Cofilin contains the nuclear transport signal sequence. J. Biol. Chem 263, 11564–11568
    OpenUrlAbstract/FREE Full Text
    1. McFarland, K. C.,
    2. Sprengel, R.,
    3. Phillips, H. S.,
    4. Kohler, M.,
    5. Rosemblit, N.,
    6. Nikolics, K.,
    7. Segaloff, D. L. and
    8. Seeburg, P. H.
    (1989). Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science 245, 494–499
    OpenUrlAbstract/FREE Full Text
    1. Mikhailov, A. V. and
    2. Gundersen, G. G.
    (1998). Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol. Cell Motil. Cytoskel 41, 325–340
    OpenUrlCrossRefPubMedWeb of Science
    1. Miklos, G. L. G. and
    2. de Couet, H. G.
    (1990). The mutations previously designated as flightless-I3, flightless I-O2 and standby are members of the W-2 complementation group at the base of the X-chromosome of Drosophila melanogaster. J. Neurogenet 6, 133–151
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller, K. G.
    (1995). Role of the actin cytoskeleton in early Drosophila development. Curr. Top. Dev. Biol 31, 167–196
    OpenUrlPubMed
    1. Miller, K. G. and
    2. Kiehart, D. P.
    (1995). Fly division. J. Cell Biol 131, 1–5
    OpenUrlFREE Full Text
    1. Mitchison, T. J. and
    2. Cramer, L. P.
    (1996). Actin-based cell motility and cell locomotion. Cell 84, 371–379
    OpenUrlCrossRefPubMedWeb of Science
    1. Morris, E. J. and
    2. Fulton, A. B.
    (1994). Rearrangement of mRNA for costamere proteins during costamere development in cultured skeletal muscle for chicken. J. Cell Sci 107, 377–386
    OpenUrlAbstract/FREE Full Text
    1. Nabi, I. R.
    (1999). The polarization of the motile cell. J. Cell Sci 112, 1803–1811
    OpenUrlAbstract/FREE Full Text
    1. Newmeyer, D. D. and
    2. Forbes, D. J.
    (1988). Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52, 641–653
    OpenUrlCrossRefPubMedWeb of Science
    1. Nigg, E. A.,
    2. Baeuerle, P. A. and
    3. Luhrmann, R.
    (1991). Nuclear import-export: in search of signals and mechanisms. Cell 66, 15–22
    OpenUrlCrossRefPubMedWeb of Science
    1. Nobes, C. D. and
    2. Hall, A.
    (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Perrimon, N.,
    2. Smouse, D. and
    3. Miklos, G. L. G.
    (1989). Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics 121, 313–331
    OpenUrlAbstract/FREE Full Text
    1. Pope, B.,
    2. Maciver, S. and
    3. Weeds, A. G.
    (1995). Localization of the calcium-sensitive actin monomer binding site in gelsolin to Segment 4 and identification of calcium binding sites. Biochemistry 34, 1583–1588
    OpenUrlCrossRefPubMed
    1. Pope, R. K.,
    2. Pestonjamasp, K. N.,
    3. Smith, K. P.,
    4. Wulfkuhle, J. D.,
    5. Strassel, C. P. and
    6. Lawrence, J. B.
    (1998). Cloning, characterization, and chromosomal localization of human supervillin (SVIL). Genomics 52, 342–351
    OpenUrlCrossRefPubMedWeb of Science
    1. Reedy, M. C. and
    2. Beall, C.
    (1993). Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Dev. Biol 160, 443–465
    OpenUrlCrossRefPubMedWeb of Science
    1. Reif, K.,
    2. Nobes, C. D.,
    3. Thomas, G.,
    4. Hall, A. and
    5. Cantrell, D. A.
    (1996). Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr. Biol 6, 1445–1455
    OpenUrlCrossRefPubMedWeb of Science
    1. Ridley, A. J. and
    2. Hall, A.
    (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399
    OpenUrlCrossRefPubMedWeb of Science
    1. Rodriguez-Viciana, P.,
    2. Warne, P. H.,
    3. Ahand, R.,
    4. Vanhaesebroeck, B.,
    5. Gout, I.,
    6. Fry, M. J.,
    7. Waterfield, M. D. and
    8. Downward, J.
    (1994). PI-3-OH kinase as a direct target of Ras. Nature 370, 527–532
    OpenUrlCrossRefPubMedWeb of Science
    1. Rodriguez-Viciana, P.,
    2. Warne, P. H.,
    3. Khwaja, A.,
    4. Marte, B. M.,
    5. Pappin, D.,
    6. Das, P.,
    7. Waterfield, M. D.,
    8. Ridley, A. J. and
    9. Downward, J.
    (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467
    OpenUrlCrossRefPubMedWeb of Science
    1. Russell, B. and
    2. Dix, D. J.
    (1992). Mechanisms for intracellular distribution of mRNA: in situ hybridization studies in muscle. Am. J. Physiol 262, 1–.
    OpenUrl
    1. Schafer, D. A.,
    2. Welch, M. D.,
    3. Machesky, L. M.,
    4. Bridgman, P. C. and
    5. Meyer, S. M.
    (1998). Visualization and molecular analysis of actin assembly in living cells. J. Cell Biol 143, 1919–1930
    OpenUrlAbstract/FREE Full Text
    1. Shaw, P. J. and
    2. Jordan, E. G.
    (1995). The Nucleolus. Annu. Rev. Cell Dev. Biol 11, 93–121
    OpenUrlCrossRefPubMedWeb of Science
    1. Singh, S. S.,
    2. Chauhan, A.,
    3. Murakami, N. and
    4. Chauhan, V. P. S.
    (1996). Profilin and gelsolin stimulate phosphatidylinositol 3-kinase activity. Biochemistry 35, 16544–16549
    OpenUrlCrossRefPubMed
    1. Small, J. V.
    (1994). Lamellipodia architecture: actin filament turnover and the lateral flow of actin filaments during motility. Semin. Cell Biol 5, 157–163
    OpenUrlCrossRefPubMed
    1. Soranno, T. and
    2. Bell, E.
    (1982). Cytostructural dynamics of spreading and translocating cells. J. Cell Biol 95, 127–136
    OpenUrlAbstract/FREE Full Text
    1. Studier, F. W.,
    2. Rosenberg, A. H.,
    3. Dunn, J. J. and
    4. Dubendorff, J. W.
    (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Meth. Enzymol 185, 60–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki, N.,
    2. Choe, H.-R.,
    3. Nishida, Y.,
    4. Yamawaki-Kataoka, Y.,
    5. Ohnishi, S.,
    6. Tamaoki, T. and
    7. Kataoka, T.
    (1990). Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc. Nat. Acad. Sci. USA 87, 8711–8715
    OpenUrlAbstract/FREE Full Text
    1. Takahashi, N.,
    2. Takahashi, Y. and
    3. Putnam, F. W.
    (1985). Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum. Proc. Nat. Acad. Sci. USA 82, 1906–1910
    OpenUrlAbstract/FREE Full Text
    1. Tan, F.,
    2. Weerasinghe, D. K.,
    3. Skidgel, R. A.,
    4. Tamei, H.,
    5. Kaul, R. K.,
    6. Roninson, I. B.,
    7. Schilling, J. W. and
    8. Erdos, E. G.
    (1990). The deduced protein sequence of the human carboxypeptidase N high molecular weight subunit reveals the presence of leucine-rich tandem repeats. J. Biol. Chem 265, 13–19
    OpenUrlAbstract/FREE Full Text
    1. Tapon, N. and
    2. Hall, A.
    (1997). Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol 9, 86–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Warn, R. M. and
    2. McGrath, R.
    (1983). F-actin distribution during the cellularization of the Drosophila embryo visualized with FL-phalloidin. Exp. Cell Res 143, 103–114
    OpenUrlCrossRefPubMed
    1. Warn, R. M. and
    2. Warn, A.
    (1986). Microtubule arrays present during thesyncytial and cellular blastoderm stages of the early Drosophila embryo. Exp. Cell Res 163, 201–210
    OpenUrlCrossRefPubMed
    1. Warn, R. M. and
    2. Robert-Nicoud, M.
    (1990). F-actin organization during the cellularization of the Drosophila embryo as revealed with a confocal laser scanning microscope. J. Cell Sci 96, 35–42
    OpenUrlAbstract/FREE Full Text
    1. Way, M. and
    2. Weeds, A. G.
    (1988). Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J. Mol. Biol 203, 1127–1133
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson, S. A.,
    2. Brown, E. C.,
    3. Kingsman, A. J. and
    4. Kingsman, S. M.
    (1998). TRIP: a novel double stranded RNA binding protein which interacts with the leucine rich repeat of flightless I. Nucl. Acids Res 26, 3460–3467
    OpenUrlAbstract/FREE Full Text
    1. Wulfkuhle, J. D.,
    2. Donina, I. E.,
    3. Stark, N. H.,
    4. Pope, R. K.,
    5. Pestonjamasp, K. N.,
    6. Niswonger, M. L. and
    7. Luna, E. J.
    (1999). Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals. J. Cell Sci 112, 2125–2136
    OpenUrlAbstract/FREE Full Text
    1. Yin, H. L.,
    2. Albrecht, J. H. and
    3. Fattoum, A.
    (1981). Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J. Cell Biol 91, 901–906
    OpenUrlAbstract/FREE Full Text
    1. Yin, H. L.
    (1986). Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323, 455–458
    OpenUrlCrossRefPubMedWeb of Science
    1. Yin, H. L.,
    2. Iida, K. and
    3. Janmey, P. A.
    (1988). Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments. J. Cell Biol 106, 805–812
    OpenUrlAbstract/FREE Full Text
    1. Young, C. L.,
    2. Feierstein, A. and
    3. Southwick, F. S.
    (1994). Calcium regulation of actin filament capping and monomer binding by macrophage capping protein. J. Biol. Chem 269, 13997–14002
    OpenUrlAbstract/FREE Full Text
    1. Ziman, M.,
    2. Pruess, D.,
    3. Mulholland, J. W.,
    4. O'Brien, J. M.,
    5. Bostein, D. and
    6. Johnson, D. I.
    (1993). Subcellular localization of Cdc42, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell 4, 1307–1316
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases
D.A. Davy, H.D. Campbell, S. Fountain, D. de Jong, M.F. Crouch
Journal of Cell Science 2001 114: 549-562;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases
D.A. Davy, H.D. Campbell, S. Fountain, D. de Jong, M.F. Crouch
Journal of Cell Science 2001 114: 549-562;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae
  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992