Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
The splice variants of vascular endothelial growth factor (VEGF) and their receptors
C.J. Robinson, S.E. Stringer
Journal of Cell Science 2001 114: 853-865;
C.J. Robinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.E. Stringer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Vascular endothelial growth factor (VEGF) is a secreted mitogen highly specific for cultured endothelial cells. In vivo VEGF induces microvascular permeability and plays a central role in both angiogenesis and vasculogenesis. VEGF is a promising target for therapeutic intervention in certain pathological conditions that are angiogenesis dependent, most notably the neovascularisation of growing tumours. Through alternative mRNA splicing, a single gene gives rise to several distinct isoforms of VEGF, which differ in their expression patterns as well as their biochemical and biological properties. Two VEGF receptor tyrosine kinases (VEGFRs) have been identified, VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1). VEGFR-2 seems to mediate almost all observed endothelial cell responses to VEGF, whereas roles for VEGFR-1 are more elusive. VEGFR-1 might act predominantly as a ligand-binding molecule, sequestering VEGF from VEGFR-2 signalling. Several isoform-specific VEGF receptors exist that modulate VEGF activity. Neuropilin-1 acts as a co-receptor for VEGF(165), enhancing its binding to VEGFR-2 and its bioactivity. Heparan sulphate proteoglycans (HSPGs), as well as binding certain VEGF isoforms, interact with both VEGFR-1 and VEGFR-2. HSPGs have a wide variety of functions, such as the ability to partially restore lost function to damaged VEGF(165) and thereby prolonging its biological activity.

  • © 2001 by Company of Biologists

REFERENCES

    1. Abe, K.,
    2. Shoji, M.,
    3. Chen, J.,
    4. Bierhaus, A.,
    5. Danave, I.,
    6. Micko, C.,
    7. Casper, K.,
    8. Dillehay, L.,
    9. Nawroth, P. P. and
    10. Rickles, F. R.
    (1999). Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc. Nat. Acad. Sci. USA 96, 8663–8668
    OpenUrlAbstract/FREE Full Text
    1. Achen, M. G.,
    2. Jeltsch, M.,
    3. Kukk, E.,
    4. Makinen, T.,
    5. Vitali, A.,
    6. Wilks, A. F.,
    7. Alitalo, K. and
    8. Stacker, S. A.
    (1998). Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk-1) and VEGF receptor 3 (Flt-4). Proc. Nat. Acad. Sci. USA 95, 548–553
    OpenUrlAbstract/FREE Full Text
    1. Akiri, G.,
    2. Nahari, D.,
    3. Finkelstein, Y.,
    4. Le, S. Y.,
    5. Elroy-Stein, O. and
    6. Levi, B. Z.
    (1998). Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17, 227–236
    OpenUrlCrossRefPubMedWeb of Science
    1. Alon, T.,
    2. Hemo, I.,
    3. Itin., A.,
    4. Pe'er., J.,
    5. Stone, J. and
    6. Keshet, E.
    (1995). Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med 10, 1024–1028
    OpenUrl
    1. Anthony, F. W.,
    2. Wheeler, T.,
    3. Elcock, C. L.,
    4. Pickett, M. and
    5. Thomas, E. J.
    (1994). Short report: identification of a specific pattern of vascular endothelial growth factor mRNA expression in human placenta and cultured placental fibroblasts. Placenta 15, 557–561
    OpenUrlCrossRefPubMedWeb of Science
    1. Asahara, T.,
    2. Bauters, C.,
    3. Zheng, L. P.,
    4. Takeshita, S.,
    5. Bunting, S.,
    6. Ferrara, N.,
    7. Symes, J. F. and
    8. Isner, J. M.
    (1995). Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92, 365–371
    OpenUrlAbstract/FREE Full Text
    1. Bacic, M.,
    2. Edwards, N. A. and
    3. Merrill, M. J.
    (1995). Differential expression of vascular endothelial growth factor (vascular permeability factor) forms in rat tissues. Growth Factors 12, 11–15
    OpenUrlCrossRefPubMedWeb of Science
    1. Barleon, B.,
    2. Sozzani, S.,
    3. Zhou, D.,
    4. Weich, H. A.,
    5. Mantovani, A. and
    6. Marme, D.
    (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor Flt-1. Blood 87, 3336–3343
    OpenUrlAbstract/FREE Full Text
    1. Barleon, B.,
    2. Totzke, F.,
    3. Herzog, C.,
    4. Blanke, S.,
    5. Kremmer, E.,
    6. Siemeister, G.,
    7. Marme, D. and
    8. Martiny-Baron, G.
    (1997). Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1. J. Biol. Chem 272, 10382–10388
    OpenUrlAbstract/FREE Full Text
    1. Barleon, B.,
    2. Siemeister, G.,
    3. Martiny-Baron, G.,
    4. Weindel, K.,
    5. Herzog, C. and
    6. Marme, D.
    (1997). Vascular endothelial growth factor up-regulates its receptor fms -like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res 57, 5421–5425
    OpenUrlAbstract/FREE Full Text
    1. Benjamin, L. E. and
    2. Keshet, E.
    (1997). Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Nat. Acad. Sci. USA 94, 8761–8766
    OpenUrlAbstract/FREE Full Text
    1. Boensch, C.,
    2. Kuo, M. D.,
    3. Connolly, D. T.,
    4. Huang, S. S. and
    5. Huang, J. S.
    (1995). Identification, purification, and characterization of cell-surface retention sequence-binding proteins from human SK-Hep cells and bovine liver plasma membranes. J. Biol. Chem 270, 1807–1816
    OpenUrlAbstract/FREE Full Text
    1. Brogi, E.,
    2. Wu, T.,
    3. Namiki, A. and
    4. Isner, J. M.
    (1994). Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 2, 649–652
    OpenUrl
    1. Brogi, E.,
    2. Schatteman, G.,
    3. Wu, T.,
    4. Kim, E. A.,
    5. Varticovski, L.,
    6. Keyt, B. and
    7. Isner, J. M.
    (1996). Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J. Clin. Invest 97, 469–476
    OpenUrlCrossRefPubMedWeb of Science
    1. Cai, H. and
    2. Reed, R. R.
    (1999). Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J. Neurosci 19, 6519–6527
    OpenUrlAbstract/FREE Full Text
    1. Cao, Y.,
    2. Chen, H.,
    3. Zhou, L.,
    4. Chiang, M. K.,
    5. Anand-Apte, B.,
    6. Weatherbee, J. A.,
    7. Wang, Y.,
    8. Fang, F.,
    9. Flanagan, J. G. and
    10. Tsang, M. L.
    (1996). Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. J. Biol. Chem 271, 3154–3162
    OpenUrlAbstract/FREE Full Text
    1. Cao, Y.,
    2. Ji, W. R.,
    3. Qi, P.,
    4. Rosin, A. and
    5. Cao, Y.
    (1997). Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem. Biophys. Res. Commun 235, 493–498
    OpenUrlCrossRefPubMedWeb of Science
    1. Cao, Y.,
    2. Linden, P.,
    3. Farnebo, J.,
    4. Cao, R.,
    5. Eriksson, A.,
    6. Kumar, V.,
    7. Qi, J. H.,
    8. Claesson-Welsh, L. and
    9. Alitalo, K.
    (1998). Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Nat. Acad. Sci. USA 95, 14389–14394
    OpenUrlAbstract/FREE Full Text
    1. Carmeliet, P.,
    2. Ferreira, V.,
    3. Breier, G.,
    4. Pollefeyt, S.,
    5. Kieckens, L.,
    6. Gertsenstein, M.,
    7. Fahrig, M.,
    8. Vandenhoeck, A.,
    9. Harpal, K.,
    10. Eberhardt, C.,
    11. Declercq, C.,
    12. Pawling, J.,
    13. Moons, L.,
    14. Collen, D.,
    15. Risau, W. and
    16. Nagy, A.
    (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen, H.,
    2. Chedotal, A.,
    3. He, Z.,
    4. Goodman, C. S. and
    5. Tessier-Lavigne, M.
    (1997). Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19, 547–559
    OpenUrlCrossRefPubMedWeb of Science
    1. Cheung, C. Y.,
    2. Singh, M.,
    3. Ebaugh, M. J. and
    4. Brace, R. A.
    (1995). Vascular endothelial growth factor gene expression in ovine placenta and fetal membranes. Am. J. Obstet. Gynecol 173, 753–759
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang, M. K. and
    2. Flanagan, J. G.
    (1995). Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 12, 1–10
    OpenUrlCrossRefPubMed
    1. Claffey, K. P.,
    2. Wilkison, W. O. and
    3. Spiegelman, B. M.
    (1992). Vascular endothelial growth factor. Regulation by cell differentiation and activated second messenger pathways. J. Biol. Chem 267, 16317–16322
    OpenUrlAbstract/FREE Full Text
    1. Claffey, K. P.,
    2. Senger, D. R. and
    3. Spiegelman, B. M.
    (1995). Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim. Biophys. Acta 1246, 1–9
    OpenUrlCrossRefPubMed
    1. Clark, D. E.,
    2. Smith, S. K.,
    3. He, Y.,
    4. Day, K. A.,
    5. Licence, D. R.,
    6. Corps, A. N.,
    7. Lammoglia, R. and
    8. Charnock-Jones, D. S.
    (1998). A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol. Reprod 59, 1540–1548
    OpenUrlAbstract/FREE Full Text
    1. Clauss, M.,
    2. Gerlach, M.,
    3. Gerlach, H.,
    4. Brett, J.,
    5. Wang, F.,
    6. Familletti, P. C.,
    7. Pan, Y. C.,
    8. Olander, J. V.,
    9. Connolly, D. T. and
    10. Stern, D.
    (1990). Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med 172, 1535–1545
    OpenUrlAbstract/FREE Full Text
    1. Clauss, M.,
    2. Weich, H.,
    3. Breier, G.,
    4. Knies, U.,
    5. Rockl, W.,
    6. Waltenberger, J. and
    7. Risau, W.
    (1996). The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem 271, 17629–17634
    OpenUrlAbstract/FREE Full Text
    1. Cohen, T.,
    2. Gitay-Goren, H.,
    3. Sharon, R.,
    4. Shibuya, M.,
    5. Halaban, R.,
    6. Levi, B. Z. and
    7. Neufeld, G.
    (1995). VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J. Biol. Chem 270, 11322–11326
    OpenUrlAbstract/FREE Full Text
    1. Connolly, D. T.,
    2. Olander, J. V.,
    3. Heuvelman, D.,
    4. Nelson, R.,
    5. Monsell, R.,
    6. Siegel, N.,
    7. Haymore, B. L.,
    8. Leimgruber, R. and
    9. Feder, J.
    (1989). Human vascular permeability factor. Isolation from U937 cells. J. Biol. Chem 264, 20017–20024
    OpenUrlAbstract/FREE Full Text
    1. Davis-Smyth, T.,
    2. Chen, H.,
    3. Park, J.,
    4. Presta, L. G. and
    5. Ferrara, N.
    (1996). The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J 15, 4919–4927
    OpenUrlPubMedWeb of Science
    1. de Vries, C.,
    2. Escobedo, J. A.,
    3. Ueno, H.,
    4. Houck, K.,
    5. Ferrara, N. and
    6. Williams, L. T.
    (1992). The fms -like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 55, 989–991
    OpenUrl
    1. Dibbens, J. A.,
    2. Miller, D. L.,
    3. Damert, A.,
    4. Risau, W.,
    5. Vadas, M. A. and
    6. Goodall, G. J.
    (1999). Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol. Biol. Cell 10, 907–919
    OpenUrlAbstract/FREE Full Text
    1. DiSalvo, J.,
    2. Bayne, M. L.,
    3. Conn, G.,
    4. Kwok, P. W.,
    5. Trivedi, P. G.,
    6. Soderman, D. D.,
    7. Palisi, T. M.,
    8. Sullivan, K. A. and
    9. Thomas, K. A.
    (1995). Purification and characterization of a naturally occurring vascular endothelial growth factor/placenta growth factor heterodimer. J. Biol. Chem 270, 7717–7723
    OpenUrlAbstract/FREE Full Text
    1. Dougher, A. M.,
    2. Wasserstrom, H.,
    3. Torley, L.,
    4. Shridaran, L.,
    5. Westdock, P.,
    6. Hileman, R. E.,
    7. Fromm, J. R.,
    8. Anderberg, R.,
    9. Lyman, S.,
    10. Linhardt, R. J.,
    11. Kaplan, J. and
    12. Terman, B. I.
    (1997). Identification of a heparin binding peptide on the extracellular domain of the KDR VEGF receptor. Growth Factors 14, 257–268
    OpenUrlCrossRefPubMedWeb of Science
    1. Dumont, D. J.,
    2. Jussila, L.,
    3. Taipale, J.,
    4. Lymboussaki, A.,
    5. Mustonen, T.,
    6. Pajusola, K.,
    7. Breitman, M. and
    8. Alitalo, K.
    (1998). Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949
    OpenUrlAbstract/FREE Full Text
    1. Eichmann, A.,
    2. Corbel, C.,
    3. Nataf, V.,
    4. Vaigot, P.,
    5. Breant, C. and
    6. Le-Douarin, N. M.
    (1997). Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascularendothelial growth factor receptor 2. Proc. Nat. Acad. Sci. USA 94, 5141–5146
    OpenUrlAbstract/FREE Full Text
    1. Enholm, B.,
    2. Paavonen, K.,
    3. Ristimaki, A.,
    4. Kumar, V.,
    5. Gunji, Y.,
    6. Klefstrom, J.,
    7. Kivinen, L.,
    8. Laiho, M.,
    9. Olofsson, B.,
    10. Joukov, V.,
    11. Eriksson, U. and
    12. Alitalo, K.
    (1997). Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14, 2475–2483
    OpenUrlCrossRefPubMedWeb of Science
    1. Fairbrother, W. J.,
    2. Champe, M. A.,
    3. Christinger, H. W.,
    4. Keyt, B. A. and
    5. Starovasnik, M. A.
    (1998). Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 6, 637–648
    OpenUrlCrossRefPubMed
    1. Farnebo, F.,
    2. Piehl, F. and
    3. Lagercrantz, J.
    (1999). Restricted expression pattern of VEGF-D in the adult and fetal mouse: high expression in the embryonic lung. Biochem. Biophys. Res. Commun 257, 891–894
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferrara, N. and
    2. Henzel, W. J.
    (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun 161, 851–858
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferrara, N.,
    2. Carver-Moore, K.,
    3. Chen, H.,
    4. Dowd, M.,
    5. Lu, L.,
    6. O'Shea, K. S.,
    7. Powell-Braxton, L.,
    8. Hillan, K. J. and
    9. Moore, M. W.
    (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferrara, N. and
    2. Davis-Smyth, T.
    (1997). The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Finnerty, H.,
    2. Kelleher, K.,
    3. Morris, G. E.,
    4. Bean, K.,
    5. Merberg, D. M.,
    6. Kriz, R.,
    7. Morris, J. C.,
    8. Sookdeo, H.,
    9. Turner, K. J. and
    10. Wood, C. R.
    (1993). Molecular cloning of murine FLT and FLT4. Oncogene 8, 2293–2298
    OpenUrlPubMedWeb of Science
    1. Folkman, J.
    (1990). What is the evidence that tumors are angiogenesis dependent?. J. Nat. Cancer Inst 82, 4–6
    OpenUrlFREE Full Text
    1. Folkman, J. and
    2. Hanahan, D.
    (1991). Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 22, 339–347
    OpenUrlPubMed
    1. Folkman, J.
    (1997). Angiogenesis and angiogenesis inhibition: an overview. EXS 79, 1–8
    OpenUrlPubMed
    1. Fong, G. H.,
    2. Rossant, J.,
    3. Gertsenstein, M. and
    4. Breitman, M. L.
    (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70
    OpenUrlCrossRefPubMedWeb of Science
    1. Fong, G. H.,
    2. Zhang, L.,
    3. Bryce, D. M. and
    4. Peng, J.
    (1999). Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025
    OpenUrlAbstract
    1. Forsythe, J. A.,
    2. Jiang, B. H.,
    3. Iyer, N. V.,
    4. Agani, F.,
    5. Leung, S. W.,
    6. Koos, R. D. and
    7. Semenza, G. L.
    (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol 16, 4604–4613
    OpenUrlAbstract/FREE Full Text
    1. Fuh, G.,
    2. Li, B.,
    3. Crowley, C.,
    4. Cunningham, B. and
    5. Wells, J. A.
    (1998). Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem 273, 11197–11204
    OpenUrlAbstract/FREE Full Text
    1. Garrido, C.,
    2. Saule, S. and
    3. Gospodarowicz, D.
    (1993). Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian bovine granulosa cells. Growth Factors 8, 109–117
    OpenUrlCrossRefPubMedWeb of Science
    1. Gengrinovitch, S.,
    2. Greenberg, S. M.,
    3. Cohen, T.,
    4. Gitay-Goren, H.,
    5. Rockwell, P.,
    6. Maione, T. E.,
    7. Levi, B. Z. and
    8. Neufeld, G.
    (1995). Platelet factor-4 inhibits the mitogenic activity of VEGF121and VEGF165using several concurrent mechanisms. J. Biol. Chem 270, 15059–15065
    OpenUrlAbstract/FREE Full Text
    1. Gengrinovitch, S.,
    2. Berman, B.,
    3. David, G.,
    4. Witte, L.,
    5. Neufeld, G. and
    6. Ron, D.
    (1999). Glypican-1 is a VEGF165binding proteoglycan that acts as an extracellular chaperone for VEGF165. J. Biol. Chem 274, 10816–10822
    OpenUrlAbstract/FREE Full Text
    1. Gerber, H. P.,
    2. Condorelli, F.,
    3. Park, J. and
    4. Ferrara, N.
    (1997). Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem 272, 23659–23667
    OpenUrlAbstract/FREE Full Text
    1. Giger, R. J.,
    2. Urquhart, E. R.,
    3. Gillespie, S. K.,
    4. Levengood, D. V.,
    5. Ginty, D. D. and
    6. Kolodkin, A. L.
    (1998). Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron 21, 1079–1092
    OpenUrlCrossRefPubMedWeb of Science
    1. Giraudo, E.,
    2. Primo, L.,
    3. Audero, E.,
    4. Gerber, H. P.,
    5. Koolwijk, P.,
    6. Soker, S.,
    7. Klagsbrun, M.,
    8. Ferrara, N. and
    9. Bussolino, F.
    (1998). Tumor necrosis factor-alpha regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells. J. Biol. Chem 273, 22128–22135
    OpenUrlAbstract/FREE Full Text
    1. Gitay-Goren, H.,
    2. Soker, S.,
    3. Vlodavsky, I. and
    4. Neufeld, G.
    (1992). The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J. Biol. Chem 267, 6093–6098
    OpenUrlAbstract/FREE Full Text
    1. Gitay-Goren, H.,
    2. Cohen, T.,
    3. Tessler, S.,
    4. Soker, S.,
    5. Gengrinovitch, S.,
    6. Rockwell, P.,
    7. Klagsbrun, M.,
    8. Levi, B. Z. and
    9. Neufeld, G.
    (1996). Selective binding of VEGF121to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J. Biol. Chem 271, 5519–5523
    OpenUrlAbstract/FREE Full Text
    1. Gospodarowicz, D.,
    2. Abraham, J. A. and
    3. Schilling, J.
    (1989). Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc. Nat. Acad. Sci. USA 86, 7311–7315
    OpenUrlAbstract/FREE Full Text
    1. Grimmond, S.,
    2. Lagercrantz, J.,
    3. Drinkwater, C.,
    4. Silins, G.,
    5. Townson, S.,
    6. Pollock, P.,
    7. Gotley, D.,
    8. Carson, E.,
    9. Rakar, S.,
    10. Nordenskjold, M.,
    11. Ward, L.,
    12. Hayward, N. and
    13. Weber, G.
    (1996). Cloning and characterization of a novel human gene related to vascular endothelial growth factor. Genome Res 6, 124–131
    OpenUrlAbstract/FREE Full Text
    1. Grugel, S.,
    2. Finkenzeller, G.,
    3. Weindel, K.,
    4. Barleon, B. and
    5. Marme, D.
    (1995). Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J. Biol. Chem 270, 25915–25919
    OpenUrlAbstract/FREE Full Text
    1. Grutzkau, A.,
    2. Kruger-Krasagakes, S.,
    3. Baumeister, H.,
    4. Schwarz, C.,
    5. Kogel, H.,
    6. Welker, P.,
    7. Lippert, U.,
    8. Henz, B. M. and
    9. Moller, A.
    (1998). Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol. Biol. Cell 9, 875–884
    OpenUrlAbstract/FREE Full Text
    1. Guerrin, M.,
    2. Moukadiri, H.,
    3. Chollet, P.,
    4. Moro, F.,
    5. Dutt, K.,
    6. Malecaze, F. and
    7. Plouet, J.
    (1995). Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J. Cell. Physiol 164, 385–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Hauser, S. and
    2. Weich, H. A.
    (1993). A heparin-binding form of placenta growth factor (PlGF-2) is expressed in human umbilical vein endothelial cells and in placenta. Growth Factors 9, 259–268
    OpenUrlCrossRefPubMedWeb of Science
    1. He, Y.,
    2. Smith, S. K.,
    3. Day, K. A.,
    4. Clark, D. E.,
    5. Licence, D. R. and
    6. Charnock-Jones, D. S.
    (1999). Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol. Endocrinol 13, 537–545
    OpenUrlCrossRefPubMedWeb of Science
    1. He, Z. and
    2. Tessier-Lavigne, M.
    (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751
    OpenUrlCrossRefPubMedWeb of Science
    1. Hiratsuka, S.,
    2. Minowa, O.,
    3. Kuno, J.,
    4. Noda, T. and
    5. Shibuya, M.
    (1998). Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Nat. Acad. Sci. USA 95, 9349–9354
    OpenUrlAbstract/FREE Full Text
    1. Houck, K. A.,
    2. Ferrara, N.,
    3. Winer, J.,
    4. Cachianes, G.,
    5. Li, B. and
    6. Leung, D. W.
    (1991). The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol 5, 1806–1814
    OpenUrlCrossRefPubMedWeb of Science
    1. Houck, K. A.,
    2. Leung, D. W.,
    3. Rowland, A. M.,
    4. Winer, J. and
    5. Ferrara, N.
    (1992). Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem 267, 26031–26037
    OpenUrlAbstract/FREE Full Text
    1. Igarashi, K.,
    2. Isohara, T.,
    3. Kato, T.,
    4. Shigeta, K.,
    5. Yamano, T. and
    6. Uno, I.
    (1998). Tyrosine-1213 of Flt-1 is a major binding site of Nck and SHP-2. Biochem. Biophys. Res. Commun 246, 95–99
    OpenUrlCrossRefPubMedWeb of Science
    1. Iliopoulos, O.,
    2. Levy, A. P.,
    3. Jiang, C.,
    4. Kaelin, W. G. Jr.. and
    5. Goldberg, M. A.
    (1996). Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Nat. Acad. Sci. USA 93, 10595–10599
    OpenUrlAbstract/FREE Full Text
    1. Jeltsch, M.,
    2. Kaipainen, A.,
    3. Joukov, V.,
    4. Meng, X.,
    5. Lakso, M.,
    6. Rauvala, H.,
    7. Swartz, M.,
    8. Fukumura, D.,
    9. Jain, R. K. and
    10. Alitalo, K.
    (1997). Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425
    OpenUrlAbstract/FREE Full Text
    1. Jiang, B. H.,
    2. Semenza, G. L.,
    3. Bauer, C. and
    4. Marti, H. H.
    (1996). Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2tension. Am. J. Physiol 271, 1172–1180
    OpenUrl
    1. Jingjing, L.,
    2. Xue, Y.,
    3. Agarwal, N. and
    4. Roque, R. S.
    (1999). Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci 40, 752–759
    OpenUrlAbstract/FREE Full Text
    1. Jonca, F.,
    2. Ortega, N.,
    3. Gleizes, P. E.,
    4. Bertrand, N. and
    5. Plouet, J.
    (1997). Cell release of bioactive fibroblast growth factor-2 by exon 6-encoded sequence of vascular endothelial growth factor. J. Biol. Chem 272, 24203–24209
    OpenUrlAbstract/FREE Full Text
    1. Joukov, V.,
    2. Pajusola, K.,
    3. Kaipainen, A.,
    4. Chilov, D.,
    5. Lahtinen, I.,
    6. Kukk, E.,
    7. Saksela, O.,
    8. Kalkkinen, N. and
    9. Alitalo, K.
    (1996). A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15, 290–298
    OpenUrlPubMedWeb of Science
    1. Joukov, V.,
    2. Sorsa, T.,
    3. Kumar, V.,
    4. Jeltsch, M.,
    5. Claesson-Welsh, L.,
    6. Cao, Y.,
    7. Saksela, O.,
    8. Kalkkinen, N. and
    9. Alitalo, K.
    (1997). Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO. J 16, 3898–3911
    OpenUrlAbstract
    1. Joukov, V.,
    2. Kaipainen, A.,
    3. Jeltsch, M.,
    4. Pajusola, K.,
    5. Olofsson, B.,
    6. Kumar, V.,
    7. Eriksson, U. and
    8. Alitalo, K.
    (1997). Vascular endothelial growth factors VEGF-B and VEGF-C. J. Cell. Physiol 173, 211–215
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaipainen, A.,
    2. Korhonen, J.,
    3. Mustonen, T.,
    4. van-Hinsbergh, V. W.,
    5. Fang, G. H.,
    6. Dumont, D.,
    7. Breitman, M. and
    8. Alitalo, K.
    (1995). Expression of the fms -like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Nat. Acad. Sci. USA 92, 3566–3570
    OpenUrlAbstract/FREE Full Text
    1. Kawakami, A.,
    2. Kitsukawa, T.,
    3. Takagi, S. and
    4. Fujisawa, H.
    (1996). Developmentally regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. J. Neurobiol 29, 1–17
    OpenUrlCrossRefPubMedWeb of Science
    1. Keck, P. J.,
    2. Hauser, S. D.,
    3. Krivi, G.,
    4. Sanzo, K.,
    5. Warren, T.,
    6. Feder, J. and
    7. Connolly, D. T.
    (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312
    OpenUrlAbstract/FREE Full Text
    1. Kendall, R. L. and
    2. Thomas, K. A.
    (1993). Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Nat. Acad. Sci. USA 90, 10705–10709
    OpenUrlAbstract/FREE Full Text
    1. Kendall, R. L.,
    2. Wang, G.,
    3. DiSalvo, J. and
    4. Thomas, K. A.
    (1994). Specificity of vascular endothelial cell growth factor receptor ligand binding domains. Biochem. Biophys. Res. Commun 201, 326–330
    OpenUrlCrossRefPubMedWeb of Science
    1. Kendall, R. L.,
    2. Wang, G. and
    3. Thomas, K. A.
    (1996). Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun 226, 324–238
    OpenUrlCrossRefPubMedWeb of Science
    1. Keyt, B. A.,
    2. Nguyen, H. V.,
    3. Berleau, L. T.,
    4. Duarte, C. M.,
    5. Park, J.,
    6. Chen, H. and
    7. Ferrara, N.
    (1996). Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem 271, 5638–5646
    OpenUrlAbstract/FREE Full Text
    1. Keyt, B. A.,
    2. Berleau, L. T.,
    3. Nguyen, H. V.,
    4. Chen, H.,
    5. Heinsohn, H.,
    6. Vandlen, R. and
    7. Ferrara, N.
    (1996). The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem 271, 7788–7795
    OpenUrlAbstract/FREE Full Text
    1. Kieser, A.,
    2. Weich, H. A.,
    3. Brandner, G.,
    4. Marme, D. and
    5. Kolch, W.
    (1994). Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9, 963–969
    OpenUrlPubMedWeb of Science
    1. Kitsukawa, T.,
    2. Shimono, A.,
    3. Kawakami, A.,
    4. Kondoh, H. and
    5. Fujisawa, H.
    (1995). Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121, 4309–4318
    OpenUrlAbstract
    1. Kitsukawa, T.,
    2. Shimizu, M.,
    3. Sanbo, M.,
    4. Hirata, T.,
    5. Taniguchi, M.,
    6. Bekku, Y.,
    7. Yagi, T. and
    8. Fujisawa, H.
    (1997). Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995–1005
    OpenUrlCrossRefPubMedWeb of Science
    1. Kolodkin, A. L.,
    2. Levengood, D. V.,
    3. Rowe, E. G.,
    4. Tai, Y. T.,
    5. Giger, R. J. and
    6. Ginty, D. D.
    (1997). Neuropilin is a semaphorin III receptor. Cell 90, 753–762
    OpenUrlCrossRefPubMedWeb of Science
    1. Kukk, E.,
    2. Lymboussaki, A.,
    3. Taira, S.,
    4. Kaipainen, A.,
    5. Jeltsch, M.,
    6. Joukov, V. and
    7. Alitalo, K.
    (1996). VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829–3837
    OpenUrlAbstract
    1. Landgren, E.,
    2. Schiller, P.,
    3. Cao, Y. and
    4. Claesson-Welsh, L.
    (1998). Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16, 359–367
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee, J.,
    2. Gray, A.,
    3. Yuan, J.,
    4. Luoh, S. M.,
    5. Avraham, H. and
    6. Wood, W. I.
    (1996). Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt-4. Proc. Nat. Acad. Sci. USA 93, 1988–1992
    OpenUrlAbstract/FREE Full Text
    1. Lei, J.,
    2. Jiang, A. and
    3. Pei, D.
    (1998). Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183. Biochim. Biophys. Acta 1443, 400–406
    OpenUrlPubMedWeb of Science
    1. Leung, D. W.,
    2. Cachianes, G.,
    3. Kuang, W. J.,
    4. Goeddel, D. V. and
    5. Ferrara, N.
    (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309
    OpenUrlAbstract/FREE Full Text
    1. Levy, A. P.,
    2. Levy, N. S.,
    3. Wegner, S. and
    4. Goldberg, M. A.
    (1995). Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem 270, 13333–13340
    OpenUrlAbstract/FREE Full Text
    1. Levy, N. S.,
    2. Chung, S.,
    3. Furneaux, H. and
    4. Levy, A. P.
    (1998). Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J. Biol. Chem 273, 6417–6423
    OpenUrlAbstract/FREE Full Text
    1. Li, J.,
    2. Brown, L. F.,
    3. Hibberd, M. G.,
    4. Grossman, J. D.,
    5. Morgan, J. P. and
    6. Simons, M.
    (1996). VEGF, Flk-1, and Flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol 270, 1803–1811
    OpenUrl
    1. Lindahl, U.,
    2. Kusche-Gullberg, M. and
    3. Kjellen, L.
    (1998). Regulated diversity of heparan sulfate. J. Biol. Chem 273, 24979–24982
    OpenUrlFREE Full Text
    1. Liu, Y.,
    2. Cox, S. R.,
    3. Morita, T. and
    4. Kourembanas, S.
    (1995). Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5enhancer. Circ. Res 77, 638–643
    OpenUrlAbstract/FREE Full Text
    1. Lyttle, D. J.,
    2. Fraser, K. M.,
    3. Fleming, S. B.,
    4. Mercer, A. A. and
    5. Robinson, A. J.
    (1994). Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol 68, 84–92
    OpenUrlAbstract/FREE Full Text
    1. Madan, A. and
    2. Curtin, P. T.
    (1993). A 24-base-pair sequence 3to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc. Nat. Acad. Sci. USA 90, 3928–3932
    OpenUrlAbstract/FREE Full Text
    1. Maeda, K.,
    2. Chung, Y. S.,
    3. Ogawa, Y.,
    4. Takatsuka, S.,
    5. Kang, S. M.,
    6. Ogawa, M.,
    7. Sawada, T. and
    8. Sowa, M.
    (1996). Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 77, 858–863
    OpenUrlCrossRefPubMedWeb of Science
    1. Maglione, D.,
    2. Guerriero, V.,
    3. Viglietto, G.,
    4. Delli-Bovi, P. and
    5. Persico, M. G.
    (1991). Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Nat. Acad. Sci. USA 88, 9267–9271
    OpenUrlAbstract/FREE Full Text
    1. Maglione, D.,
    2. Guerriero, V.,
    3. Viglietto, G.,
    4. Ferraro, M. G.,
    5. Aprelikova, O.,
    6. Alitalo, K.,
    7. Del-Vecchio, S.,
    8. Lei, K. J.,
    9. Chou, J. Y. and
    10. Persico, M. G.
    (1993). Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14. Oncogene 8, 925–931
    OpenUrlPubMedWeb of Science
    1. Makinen, T.,
    2. Olofsson, B.,
    3. Karpanen, T.,
    4. Hellman, U.,
    5. Soker, S.,
    6. Klagsbrun, M.,
    7. Eriksson, U. and
    8. Alitalo, K.
    (1999). Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J. Biol. Chem 274, 21217–21222
    OpenUrlAbstract/FREE Full Text
    1. Matthews, W.,
    2. Jordan, C. T.,
    3. Gavin, M.,
    4. Jenkins, N. A.,
    5. Copeland, N. G. and
    6. Lemischka, I. R.
    (1991). A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc. Nat. Acad. Sci. USA 88, 9026–9030
    OpenUrlAbstract/FREE Full Text
    1. Mazure, N. M.,
    2. Chen, E. Y.,
    3. Yeh, P.,
    4. Laderoute, K. R. and
    5. Giaccia, A. J.
    (1996). Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 56, 3436–3440
    OpenUrlAbstract/FREE Full Text
    1. McDonald, N. Q. and
    2. Hendrickson, W. A.
    (1993). A structural superfamily of growth factors containing a cystine knot motif. Cell 73, 421–424
    OpenUrlCrossRefPubMedWeb of Science
    1. Meyer, M.,
    2. Clauss, M.,
    3. Lepple-Wienhues, A.,
    4. Waltenberger, J.,
    5. Augustin, H. G.,
    6. Ziche, M.,
    7. Lanz, C.,
    8. Buttner, M.,
    9. Rziha, H. J. and
    10. Dehio, C.
    (1999). A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18, 363–374
    OpenUrlAbstract
    1. Miao, H. Q.,
    2. Soker, S.,
    3. Feiner, L.,
    4. Alonso, J. L.,
    5. Raper, J. A. and
    6. Klagsbrun, M.
    (1999). Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol 146, 233–242
    OpenUrlAbstract/FREE Full Text
    1. Migdal, M.,
    2. Huppertz, B.,
    3. Tessler, S.,
    4. Comforti, A.,
    5. Shibuya, M.,
    6. Reich, R.,
    7. Baumann, H. and
    8. Neufeld, G.
    (1998). Neuropilin-1 is a placenta growth factor-2 receptor. J. Biol. Chem 273, 22272–22278
    OpenUrlAbstract/FREE Full Text
    1. Millauer, B.,
    2. Wizigmann-Voos, S.,
    3. Schnurch, H.,
    4. Martinez, R.,
    5. Moller, N. P.,
    6. Risau, W. and
    7. Ullrich, A.
    (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846
    OpenUrlCrossRefPubMedWeb of Science
    1. Minchenko, A.,
    2. Bauer, T.,
    3. Salceda, S. and
    4. Caro, J.
    (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab. Invest 71, 374–379
    OpenUrlPubMedWeb of Science
    1. Morishita, K.,
    2. Johnson, D. E. and
    3. Williams, L. T.
    (1995). A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J. Biol. Chem 270, 27948–27953
    OpenUrlAbstract/FREE Full Text
    1. Mukhopadhyay, D.,
    2. Tsiokas, L. and
    3. Sukhatme, V. P.
    (1995). Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 55, 6161–6165
    OpenUrlAbstract/FREE Full Text
    1. Mukhopadhyay, D.,
    2. Knebelmann, B.,
    3. Cohen, H. T.,
    4. Ananth, S. and
    5. Sukhatme, V. P.
    (1997). The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol. Cell. Biol 17, 5629–5639
    OpenUrlAbstract/FREE Full Text
    1. Muller, Y. A.,
    2. Christinger, H. W.,
    3. Keyt, B. A. and
    4. de Vos, A. M.
    (1997). The crystal structure of vascular endothelial growth factor (VEGF) refined to 1. 93 Å resolution: multiple copy flexibility and receptor binding. Structure 5, 1325–1338
    OpenUrlCrossRefPubMed
    1. Murray-Rust, J.,
    2. McDonald, N. Q.,
    3. Blundell, T. L.,
    4. Hosang, M.,
    5. Oefner, C.,
    6. Winkler, F. and
    7. Bradshaw, R. A.
    (1993). Topological similarities in TGF-2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1, 153–159
    OpenUrlCrossRefPubMed
    1. Ogawa, S.,
    2. Oku, A.,
    3. Sawano, A.,
    4. Yamaguchi, S.,
    5. Yazaki, Y. and
    6. Shibuya, M.
    (1998). A novel type of vascular endothelial growth factor, VEGF-E(NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem 273, 31273–31282
    OpenUrlAbstract/FREE Full Text
    1. Olofsson, B.,
    2. Pajusola, K.,
    3. Kaipainen, A.,
    4. von-Euler, G.,
    5. Joukov, V.,
    6. Saksela, O.,
    7. Orpana, A.,
    8. Pettersson, R. F.,
    9. Alitalo, K. and
    10. Eriksson, U.
    (1996). Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Nat. Acad. Sci. USA 93, 2576–2581
    OpenUrlAbstract/FREE Full Text
    1. Olofsson, B.,
    2. Pajusola, K.,
    3. von-Euler, G.,
    4. Chilov, D.,
    5. Alitalo, K. and
    6. Eriksson, U.
    (1996). Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform. J. Biol. Chem 271, 19310–19317
    OpenUrlAbstract/FREE Full Text
    1. Olofsson, B.,
    2. Korpelainen, E.,
    3. Pepper, M. S.,
    4. Mandriota, S. J.,
    5. Aase, K.,
    6. Kumar, V.,
    7. Gunji, Y.,
    8. Jeltsch, M. M.,
    9. Shibuya, M.,
    10. Alitalo, K. and
    11. Eriksson, U.
    (1998). Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Nat. Acad. Sci. USA 95, 11709–11714
    OpenUrlAbstract/FREE Full Text
    1. Omura, T.,
    2. Miyazawa, K.,
    3. Ostman, A. and
    4. Heldin, C. H.
    (1997). Identification of a 190-kDa vascular endothelial growth factor 165 cell surface binding protein on a human glioma cell line. J. Biol. Chem 272, 23317–23322
    OpenUrlAbstract/FREE Full Text
    1. Orlandini, M.,
    2. Marconcini, L.,
    3. Ferruzzi, R. and
    4. Oliviero, S.
    (1996). Identification of a c- fos -induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Nat. Acad. Sci. USA 93, 11675–11680
    OpenUrlAbstract/FREE Full Text
    1. Pajusola, K.,
    2. Aprelikova, O.,
    3. Korhonen, J.,
    4. Kaipainen, A.,
    5. Pertovaara, L.,
    6. Alitalo, R. and
    7. Alitalo, K.
    (1992). FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res 52, 5738–5743
    OpenUrlAbstract/FREE Full Text
    1. Pal, S.,
    2. Claffey, K. P.,
    3. Dvorak, H. F. and
    4. Mukhopadhyay, D.
    (1997). The von Hippel-Lindau gene product inhibits vascular permeability factor/vascular endothelial growth factor expression in renal cell carcinoma by blocking protein kinase C pathways. J. Biol. Chem 272, 27509–27512
    OpenUrlAbstract/FREE Full Text
    1. Park, J. E.,
    2. Keller, G. A. and
    3. Ferrara, N.
    (1993). The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326
    OpenUrlAbstract/FREE Full Text
    1. Park, J. E.,
    2. Chen, H. H.,
    3. Winer, J.,
    4. Houck, K. A. and
    5. Ferrara, N.
    (1994). Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem 269, 25646–25654
    OpenUrlAbstract/FREE Full Text
    1. Park, M. and
    2. Lee, S. T.
    (1999). The fourth immunoglobulin-like loop in the extracellular domain of FLT-1, a VEGF receptor, includes a major heparin-binding site. Biochem. Biophys. Res. Commun 264, 730–734
    OpenUrlCrossRefPubMedWeb of Science
    1. Patterson, C.,
    2. Perrella, M. A.,
    3. Hsieh, C. M.,
    4. Yoshizumi, M.,
    5. Lee, M. E. and
    6. Haber, E.
    (1995). Cloning and functional analysis of the promoter for KDR/ flk -1, a receptor for vascular endothelial growth factor. J. Biol. Chem 270, 23111–23118
    OpenUrlAbstract/FREE Full Text
    1. Pekala, P.,
    2. Marlow, M.,
    3. Heuvelman, D. and
    4. Connolly, D.
    (1990). Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor-alpha, but not by insulin. J. Biol. Chem 265, 18051–18054
    OpenUrlAbstract/FREE Full Text
    1. Pepper, M. S.,
    2. Ferrara, N.,
    3. Orci, L. and
    4. Montesano, R.
    (1991). Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun 181, 902–906
    OpenUrlCrossRefPubMedWeb of Science
    1. Pepper, M. S. and
    2. Mandriota, S. J.
    (1998). Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cells. Exp. Cell. Res 241, 414–425
    OpenUrlCrossRefPubMedWeb of Science
    1. Pepper, M. S.,
    2. Mandriota, S. J.,
    3. Jeltsch, M.,
    4. Kumar, V. and
    5. Alitalo, K.
    (1998). Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J. Cell. Physiol 177, 439–452
    OpenUrlCrossRefPubMedWeb of Science
    1. Peretz, D.,
    2. Gitay-Goren, H.,
    3. Safran, M.,
    4. Kimmel, N.,
    5. Gospodarowicz, D. and
    6. Neufeld, G.
    (1992). Glycosylation of vascular endothelial growth factor is not required for its mitogenic activity. Biochem. Biophys. Res. Commun 182, 1340–1347
    OpenUrlCrossRefPubMedWeb of Science
    1. Persico, M. G.,
    2. Vincenti, V. and
    3. DiPalma, T.
    (1999). Structure, expression and receptor-binding properties of placenta growth factor (PlGF). Curr. Top. Microbiol. Immunol 237, 31–40
    OpenUrlPubMedWeb of Science
    1. Pertovaara, L.,
    2. Kaipainen, A.,
    3. Mustonen, T.,
    4. Orpana, A.,
    5. Ferrara, N.,
    6. Saksela, O. and
    7. Alitalo, K.
    (1994). Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J. Biol. Chem 269, 6271–6274
    OpenUrlAbstract/FREE Full Text
    1. Peters, K. G.,
    2. De Vries, C. and
    3. Williams, L. T.
    (1993). Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Nat. Acad. Sci. USA 90, 8915–8919
    OpenUrlAbstract/FREE Full Text
    1. Petrova, T. V.,
    2. Makinen, T. and
    3. Alitalo, K.
    (1999). Signaling via vascular endothelial growth factor receptors. Exp. Cell. Res 253, 117–130
    OpenUrlCrossRefPubMedWeb of Science
    1. Piossek, C.,
    2. Schneider-Mergener, J.,
    3. Schirner, M.,
    4. Vakalopoulou, E.,
    5. Germeroth, L. and
    6. Thierauch, K. H.
    (1999). Vascular endothelial growth factor (VEGF) receptor II-derived peptides inhibit VEGF. J. Biol. Chem 274, 5612–5619
    OpenUrlAbstract/FREE Full Text
    1. Plate, K. H.,
    2. Breier, G.,
    3. Weich, H. A. and
    4. Risau, W.
    (1992). Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848
    OpenUrlCrossRefPubMedWeb of Science
    1. Plouet, J.,
    2. Schilling, J. and
    3. Gospodarowicz, D.
    (1989). Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J 8, 3801–3806
    OpenUrlPubMedWeb of Science
    1. Plouet, J.,
    2. Moro, F.,
    3. Bertagnolli, S.,
    4. Coldeboeuf, N.,
    5. Mazarguil, H.,
    6. Clamens, S. and
    7. Bayard, F.
    (1997). Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J. Biol. Chem 272, 13390–13396
    OpenUrlAbstract/FREE Full Text
    1. Poltorak, Z.,
    2. Cohen, T.,
    3. Sivan, R.,
    4. Kandelis, Y.,
    5. Spira, G.,
    6. Vlodavsky, I.,
    7. Keshet, E. and
    8. Neufeld, G.
    (1997). VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J. Biol. Chem 272, 7151–7158
    OpenUrlAbstract/FREE Full Text
    1. Potgens, A. J.,
    2. Lubsen, N. H.,
    3. van-Altena, M. C.,
    4. Vermeulen, R.,
    5. Bakker, A.,
    6. Schoenmakers, J. G.,
    7. Ruiter, D. J. and
    8. de-Waal, R. M.
    (1994). Covalent dimerization of vascular permeability factor/vascular endothelial growth factor is essential for its biological activity. Evidence from Cys to Ser mutations. J. Biol. Chem 269, 32879–32885
    OpenUrlAbstract/FREE Full Text
    1. Praloran, V.,
    2. Mirshahi, S.,
    3. Favard, C.,
    4. Moukadiri, H. and
    5. Plouet, J.
    (1991). Mitogenic activity of vasculotropin for peripheral human lymphocytes. C. R. Acad. Sci. III 313, 21–26
    OpenUrlPubMed
    1. Quinn, T. P.,
    2. Peters, K. G.,
    3. de Vries, C.,
    4. Ferrara, N. and
    5. Williams, L. T.
    (1993). Fetal liver kinase-1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Nat. Acad. Sci. USA 90, 7533–7537
    OpenUrlAbstract/FREE Full Text
    1. Rak, J.,
    2. Filmus, J.,
    3. Finkenzeller, G.,
    4. Grugel, S.,
    5. Marme, D. and
    6. Kerbel, R. S.
    (1995). Oncogenes as inducers of tumor angiogenesis. Cancer Metast. Rev. 14, 263–277
    OpenUrlCrossRefPubMedWeb of Science
    1. Salceda, S.,
    2. Beck, I. and
    3. Caro, J.
    (1996). Absolute requirement of aryl hydrocarbon receptor nuclear translocator protein for gene activation by hypoxia. Arch. Biochem. Biophys 334, 389–394
    OpenUrlCrossRefPubMedWeb of Science
    1. Seetharam, L.,
    2. Gotoh, N.,
    3. Maru, Y.,
    4. Neufeld, G.,
    5. Yamaguchi, S. and
    6. Shibuya, M.
    (1995). A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10, 135–147
    OpenUrlPubMedWeb of Science
    1. Semenza, G. L.,
    2. Agani, F.,
    3. Booth, G.,
    4. Forsythe, J.,
    5. Iyer, N.,
    6. Jiang, B. H.,
    7. Leung, S.,
    8. Roe, R.,
    9. Wiener, C. and
    10. Yu, A.
    (1997). Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int 51, 553–555
    OpenUrlCrossRefPubMedWeb of Science
    1. Senger, D. R.,
    2. Galli, S. J.,
    3. Dvorak, A. M.,
    4. Perruzzi, C. A.,
    5. Harvey, V.S. and
    6. Dvorak, H. F.
    (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985
    OpenUrlAbstract/FREE Full Text
    1. Shalaby, F.,
    2. Rossant, J.,
    3. Yamaguchi, T. P.,
    4. Gertsenstein, M.,
    5. Wu, X. F.,
    6. Breitman, M. L. and
    7. Schuh, A. C.
    (1995). Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 376, 62–66
    OpenUrlCrossRefPubMedWeb of Science
    1. Sheibani, N. and
    2. Frazier, W. A.
    (1998). Down-regulation of platelet endothelial cell adhesion molecule-1 results in thrombospondin-1 expression and concerted regulation of endothelial cell phenotype. Mol. Biol. Cell 9, 701–713
    OpenUrlAbstract/FREE Full Text
    1. Shen, B. Q.,
    2. Lee, D. Y.,
    3. Gerber, H. P.,
    4. Keyt, B. A.,
    5. Ferrara, N. and
    6. Zioncheck, T. F.
    (1998). Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J. Biol. Chem 273, 29979–29985
    OpenUrlAbstract/FREE Full Text
    1. Shibuya, M.,
    2. Yamaguchi, S.,
    3. Yamane, A.,
    4. Ikeda, T.,
    5. Tojo, A.,
    6. Matsushime, H. and
    7. Sato, M.
    (1990). Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5, 519–524
    OpenUrlPubMedWeb of Science
    1. Shinkai, A.,
    2. Ito, M.,
    3. Anazawa, H.,
    4. Yamaguchi, S.,
    5. Shitara, K. and
    6. Shibuya, M.
    (1998). Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J. Biol. Chem 273, 31283–31288
    OpenUrlAbstract/FREE Full Text
    1. Shweiki, D.,
    2. Itin, A.,
    3. Soffer, D. and
    4. Keshet, E.
    (1992). Vascular endothelialgrowth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845
    OpenUrlCrossRefPubMedWeb of Science
    1. Siemeister, G.,
    2. Weindel, K.,
    3. Mohrs, K.,
    4. Barleon, B.,
    5. Martiny-Baron, G. and
    6. Marme, D.
    (1996). Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 56, 2299–2301
    OpenUrlAbstract/FREE Full Text
    1. Siemeister, G.,
    2. Schirner, M.,
    3. Reusch, P.,
    4. Barleon, B.,
    5. Marme, D. and
    6. Martiny-Baron, G.
    (1998). An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells. Proc. Nat. Acad. Sci. USA 95, 4625–4629
    OpenUrlAbstract/FREE Full Text
    1. Siemeister, G.,
    2. Marme, D. and
    3. Martiny-Baron, G.
    (1998). The alpha-helical domain near the amino terminus is essential for dimerization of vascular endothelial growth factor. J. Biol. Chem 273, 11115–11120
    OpenUrlAbstract/FREE Full Text
    1. Soker, S.,
    2. Svahn, C. M. and
    3. Neufeld, G.
    (1993). Vascular endothelial growth factor is inactivated by binding to alpha 2-macroglobulin and the binding is inhibited by heparin. J. Biol. Chem 268, 7685–7691
    OpenUrlAbstract/FREE Full Text
    1. Soker, S.,
    2. Fidder, H.,
    3. Neufeld, G. and
    4. Klagsbrun, M.
    (1996). Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165via its exon 7-encoded domain. J. Biol. Chem 271, 5761–5767
    OpenUrlAbstract/FREE Full Text
    1. Soker, S.,
    2. Takashima, S.,
    3. Miao, H. Q.,
    4. Neufeld, G. and
    5. Klagsbrun, M.
    (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745
    OpenUrlCrossRefPubMedWeb of Science
    1. Sondell, M.,
    2. Lundborg, G. and
    3. Kanje, M.
    (1999). Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci 19, 5731–5740
    OpenUrlAbstract/FREE Full Text
    1. Stein, I.,
    2. Itin, A.,
    3. Einat, P.,
    4. Skaliter, R.,
    5. Grossman, Z. and
    6. Keshet, E.
    (1998). Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol. Cell. Biol 18, 3112–3119
    OpenUrlAbstract/FREE Full Text
    1. Stratmann, R.,
    2. Krieg, M.,
    3. Haas, R. and
    4. Plate, K. H.
    (1997). Putative control of angiogenesis in hemangioblastomas by the von Hippel-Lindau tumor suppressor gene. J. Neuropathol. Exp. Neurol 56, 1242–1252
    OpenUrlCrossRefPubMedWeb of Science
    1. Stringer, S. E. and
    2. Gallagher, J. T.
    (1997). Heparan sulphate. Int. J. Biochem. Cell. Biol 29, 709–714
    OpenUrlCrossRefPubMedWeb of Science
    1. Sugihara, T.,
    2. Wadhwa, R.,
    3. Kaul, S. C. and
    4. Mitsui, Y.
    (1998). A novel alternatively spliced form of murine vascular endothelial growth factor, VEGF115. J. Biol. Chem 273, 3033–3038
    OpenUrlAbstract/FREE Full Text
    1. Sun, P. D. and
    2. Davies, D. R.
    (1995). The cystine-knot growth-factor superfamily. Annu. Rev. Biophys. Biomol. Struct 24, 269–291
    OpenUrlCrossRefPubMedWeb of Science
    1. Takagi, H.,
    2. King, G. L.,
    3. Robinson, G. S.,
    4. Ferrara, N. and
    5. Aiello, L. P.
    (1996). Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest. Ophthalmol. Vis. Sci 37, 2165–2176
    OpenUrlAbstract/FREE Full Text
    1. Takagi, S.,
    2. Kasuya, Y.,
    3. Shimizu, M.,
    4. Matsuura, T.,
    5. Tsuboi, M.,
    6. Kawakami, A. and
    7. Fujisawa, H.
    (1995). Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Dev. Biol 170, 207–222
    OpenUrlCrossRefPubMedWeb of Science
    1. Takahashi, T. and
    2. Shibuya, M.
    (1997). The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 14, 2079–2089
    OpenUrlCrossRefPubMedWeb of Science
    1. Terman, B. I.,
    2. Carrion, M. E.,
    3. Kovacs, E.,
    4. Rasmussen, B. A.,
    5. Eddy, R. L. and
    6. Shows, T. B.
    (1991). Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677–1683
    OpenUrlPubMedWeb of Science
    1. Terman, B. I.,
    2. Dougher-Vermazen, M.,
    3. Carrion, M. E.,
    4. Dimitrov, D.,
    5. Armellino, D. C.,
    6. Gospodarowicz, D. and
    7. Bohlen, P.
    (1992). Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun 187, 1579–1586
    OpenUrlCrossRefPubMedWeb of Science
    1. Terman, B.,
    2. Khandke, L.,
    3. Dougher-Vermazan, M.,
    4. Maglione, D.,
    5. Lassam, N. J.,
    6. Gospodarowicz, D.,
    7. Persico, M. G.,
    8. Bohlen, P. and
    9. Eisinger, M.
    (1994). VEGF receptor subtypes KDR and FLT1 show different sensitivities to heparin and placenta growth factor. Growth Factors 11, 187–195
    OpenUrlCrossRefPubMedWeb of Science
    1. Tessler, S.,
    2. Rockwell, P.,
    3. Hicklin, D.,
    4. Cohen, T.,
    5. Levi, B. Z.,
    6. Witte, L.,
    7. Lemischka, I. R. and
    8. Neufeld, G.
    (1994). Heparin modulates the interaction of VEGF165with soluble and cell associated Flk-1 receptors. J. Biol. Chem 269, 12456–12461
    OpenUrlAbstract/FREE Full Text
    1. Thieme, H.,
    2. Aiello, L. P.,
    3. Takagi, H.,
    4. Ferrara, N. and
    5. King, G. L.
    (1995). Comparative analysis of vascular endothelial growth factor receptors on retinal and aortic vascular endothelial cells. Diabetes 44, 98–103
    OpenUrlAbstract/FREE Full Text
    1. Tischer, E.,
    2. Mitchell, R.,
    3. Hartman, T.,
    4. Silva, M.,
    5. Gospodarowicz, D.,
    6. Fiddes, J. C. and
    7. Abraham, J. A.
    (1991). The human gene for vascularendothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem 266, 11947–11954
    OpenUrlAbstract/FREE Full Text
    1. Toi, M.,
    2. Hoshina, S.,
    3. Takayanagi, T. and
    4. Tominaga, T.
    (1994). Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J. Cancer Res 85, 1045–1049
    OpenUrlCrossRefPubMedWeb of Science
    1. Tordjman, R.,
    2. Ortega, N.,
    3. Coulombel, L.,
    4. Plouet, J.,
    5. Romeo, P. H. and
    6. Lemarchandel, V.
    (1999). Neuropilin-1 is expressed on bone marrow stromal cells: a novel interaction with hematopoietic cells?. Blood 94, 2301–2309
    OpenUrlAbstract/FREE Full Text
    1. Tuder, R. M.,
    2. Flook, B. E. and
    3. Voelkel, N. F.
    (1995). Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J. Clin. Invest 95, 1798–1807
    OpenUrlCrossRefPubMedWeb of Science
    1. Unemori, E. N.,
    2. Ferrara, N.,
    3. Bauer, E. A. and
    4. Amento, E. P.
    (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol 153, 557–562
    OpenUrlCrossRefPubMedWeb of Science
    1. Vincenti, V.,
    2. Cassano, C.,
    3. Rocchi, M. and
    4. Persico, G.
    (1996). Assignment of the vascular endothelial growth factor gene to human chromosome 6p21. 3. Circulation 93, 1493–1495
    OpenUrlAbstract/FREE Full Text
    1. Waltenberger, J.,
    2. Claesson-Welsh, L.,
    3. Siegbahn, A.,
    4. Shibuya, M. and
    5. Heldin, C. H.
    (1994). Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem 269, 26988–26995
    OpenUrlAbstract/FREE Full Text
    1. Waltenberger, J.,
    2. Mayr, U.,
    3. Pentz, S. and
    4. Hombach, V.
    (1996). Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94, 1647–1654
    OpenUrlAbstract/FREE Full Text
    1. Wang, H. and
    2. Keiser, J. A.
    (1998). Vascular endothelial growth factorupregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of Flt-1. Circ. Res 83, 832–840
    OpenUrlAbstract/FREE Full Text
    1. Wen, Y.,
    2. Edelman, J. L.,
    3. Kang, T.,
    4. Zeng, N. and
    5. Sachs, G.
    (1998). Two functional forms of vascular endothelial growth factor receptor-2/Flk-1 mRNA are expressed in normal rat retina. J. Biol. Chem 273, 2090–2097
    OpenUrlAbstract/FREE Full Text
    1. Wiesmann, C.,
    2. Fuh, G.,
    3. Christinger, H. W.,
    4. Eigenbrot, C.,
    5. Wells, J. A. and
    6. de Vos, A. M.
    (1997). Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695–704
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilting, J.,
    2. Birkenhager, R.,
    3. Eichmann, A.,
    4. Kurz, H.,
    5. Martiny-Baron, G.,
    6. Marme, D.,
    7. McCarthy, J. E.,
    8. Christ, B. and
    9. Weich, H. A.
    (1996). VEGF121induces proliferation of vascular endothelial cells and expression of Flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev. Biol 176, 76–85
    OpenUrlCrossRefPubMedWeb of Science
    1. Wise, L. M.,
    2. Veikkola, T.,
    3. Mercer, A. A.,
    4. Savory, L. J.,
    5. Fleming, S. B.,
    6. Caesar, C.,
    7. Vitali, A.,
    8. Makinen, T.,
    9. Alitalo, K. and
    10. Stacker, S. A.
    (1999). Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc. Nat. Acad. Sci. USA 96, 3071–3076
    OpenUrlAbstract/FREE Full Text
    1. Witzenbichler, B.,
    2. Asahara, T.,
    3. Murohara, T.,
    4. Silver, M.,
    5. Spyridopoulos, I.,
    6. Magner, M.,
    7. Principe, N.,
    8. Kearney, M.,
    9. Hu, J. S. and
    10. Isner, J. M.
    (1998). Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am. J. Pathol 153, 381–394
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamada, Y.,
    2. Nezu, J.,
    3. Shimane, M. and
    4. Hirata, Y.
    (1997). Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics 42, 483–488
    OpenUrlCrossRefPubMedWeb of Science
    1. Zachary, I.
    (1998). Vascular endothelial growth factor: how it transmits its signal. Exp. Nephrol 6, 480–487
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The splice variants of vascular endothelial growth factor (VEGF) and their receptors
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
The splice variants of vascular endothelial growth factor (VEGF) and their receptors
C.J. Robinson, S.E. Stringer
Journal of Cell Science 2001 114: 853-865;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
The splice variants of vascular endothelial growth factor (VEGF) and their receptors
C.J. Robinson, S.E. Stringer
Journal of Cell Science 2001 114: 853-865;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • The cytoplasmic fate of mRNA
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992