Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Oligomerisation of G-protein-coupled receptors
G. Milligan
Journal of Cell Science 2001 114: 1265-1271;
G. Milligan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

A range of approaches have recently provided evidence that G-protein-coupled receptors can exist as oligomeric complexes. Both homo-oligomers, comprising multiple copies of the same gene product, and hetero-oligomers containing more than one receptor have been detected. In several, but not all, examples, the extent of oligomerisation is regulated by the presence of agonist ligands, and emerging evidence indicates that receptor hetero-oligomers can display distinct pharmacological characteristics. A chaperonin-like role for receptor oligomerisation in effective delivery of newly synthesised receptors to the cell surface is a developing concept, and recent studies have employed a series of energy-transfer techniques to explore the presence and regulation of receptor oligomerisation in living cells. However, the majority of studies have relied largely on co-immunoprecipitation techniques, and there is still little direct information on the fraction of receptors existing as oligomers in intact cells.

  • © 2001 by Company of Biologists

REFERENCES

    1. AbdAlla, S.,
    2. Zaki, E.,
    3. Lother, H. and
    4. Quitterer, U.
    (1999). Involvement of the amino terminus of the B(2) receptor in agonist-induced receptor dimerization. J. Biol. Chem 274, 26079–26084
    OpenUrlAbstract/FREE Full Text
    1. AbdAlla, S.,
    2. Lother, H. and
    3. Quitterer, U.
    (2000). AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407, 94–98
    OpenUrlCrossRefPubMedWeb of Science
    1. Bockaert, J. and
    2. Pin, J. P.
    (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18, 1723–1729
    OpenUrlAbstract
    1. Barbier, P.,
    2. Colelli, A.,
    3. Bolognesi, M. L.,
    4. Minarini, A.,
    5. Tumiatti, V.,
    6. Corsini, G. U.,
    7. Melchiorre, C. and
    8. Maggio, R.
    (1998). Antagonist binding profile of the split chimeric muscarinic m2-trunc/m3-tail. Eur. J. Pharmacol 355, 267–274
    OpenUrlCrossRefPubMed
    1. Cornea, A.,
    2. Janovick, J. A.,
    3. Maya-Nunez, G. and
    4. Conn, P. M.
    (2001). Gonadotropin releasing hormone microaggregation: rate monitored by fluorescence resonance energy transfer. J. Biol. Chem 276, 2153–2158
    OpenUrlAbstract/FREE Full Text
    1. Cvejic, S. and
    2. Devi, L.A.
    (1997). Dimerization of theopioid receptor: implication for a role in receptor internalization. J Biol. Chem 273, 26959–26964
    OpenUrl
    1. Fukushima, Y.,
    2. Asano, T.,
    3. Saitoh, T.,
    4. Anai, M.,
    5. Funaki, M.,
    6. Ogihara, T.,
    7. Katagiri, H.,
    8. Matsuhashi, N.,
    9. Yazaki, Y. and
    10. Sugano, K.
    (1997). Oligomer formation of histamine H2 receptors expressed in Sf9 and C0S7 cells. FEBS Lett 409, 283–286
    OpenUrlCrossRefPubMed
    1. George, S. R.,
    2. Fan, T.,
    3. Xie, Z.,
    4. Tse, R.,
    5. Tam, V.,
    6. Varghese, G. and
    7. O'Dowd, B. F.
    (2000). Oligomerization of-and -opioid receptors. J. Biol. Chem 275, 26128–26135
    OpenUrlAbstract/FREE Full Text
    1. Gouldson, P. R.,
    2. Higgs, C.,
    3. Smith, R. E.,
    4. Dean, M. K.,
    5. Gkoutos, G. V. and
    6. Reynolds, C. A.
    (2000). Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology 23, 60–.
    OpenUrlCrossRef
    1. Grosse, R.,
    2. Schoneberg, T.,
    3. Schultz, G. and
    4. Gudermann, T.
    (1997). Inhibition of gonadotrophin-releasing hormone receptor signaling by expression of a splice variant of the human receptor. Mol. Endocrinol 11, 1305–1318
    OpenUrlCrossRefPubMedWeb of Science
    1. Hall, R. A.,
    2. Premont, R. T. and
    3. Lefkowitz, R. J.
    (1999). Heptahelical receptor signaling: beyond the G protein paradigm. J. Cell Biol 145, 927–932
    OpenUrlFREE Full Text
    1. Herbert, T. E.,
    2. Moffett, S.,
    3. Morello, J.-P.,
    4. Loisel, T. P.,
    5. Bichet, D. G.,
    6. Barret, C. and
    7. Bouvier, M.
    (1996). A peptide derived from a2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem 271, 16384–16392
    OpenUrlAbstract/FREE Full Text
    1. Herbert, T. E.,
    2. Loisel, T. P.,
    3. Adam, L.,
    4. Ethier, N.,
    5. St. Onge, S. and
    6. Bovier, M.
    (1998). Functional rescue of a constitutively2AR through receptor dimerzation. Biochem. J 330, 287–293
    OpenUrlAbstract/FREE Full Text
    1. Heuss, C. and
    2. Gerber, U.
    (2000). G-protein-independent signaling by G-protein-coupled receptors. Trends Neurosci 23, 469–475
    OpenUrlCrossRefPubMedWeb of Science
    1. Hovius, R.,
    2. Vallotton, P.,
    3. Wohland, T. and
    4. Vogel, H.
    (2000). Fluorescence techniques: shedding light on ligand-receptor interactions. Trends Pharmacol. Sci 21, 266–273
    OpenUrlCrossRefPubMed
    1. Jones, K. A.,
    2. Borowsky, B.,
    3. Tamm, J. A.,
    4. Craig, D. A.,
    5. Durkin, M. M.,
    6. Dai, M.,
    7. Yao, W.-J.,
    8. Johnson, M.,
    9. Gunwaldsen, C.,
    10. Huang, L.-Y. and
    11. et al.
    (1998). GABABreceptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679
    OpenUrlCrossRefPubMedWeb of Science
    1. Jordan, B. A. and
    2. Devi, L. A.
    (1999). G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700
    OpenUrlCrossRefPubMedWeb of Science
    1. Karpa, K. D.,
    2. Lin, R.,
    3. Kabbani, N. and
    4. Levenson, R.
    (2000). The dopamine D3 receptor interacts with itself and the truncated D3 splice variant D3nf: D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol 58, 677–683
    OpenUrlAbstract/FREE Full Text
    1. Kaupmann, K.,
    2. Huggel, K.,
    3. Heid, J.,
    4. Flor, P. J.,
    5. Bischoff, S.,
    6. Mickel, S. J.,
    7. McMaster, G.,
    8. Angst, C.,
    9. Bittiger, H.,
    10. Froestl, W. and
    11. Bettler, B.
    (1997). Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaupmann, K.,
    2. Malitschek, B.,
    3. Schuler, V.,
    4. Heid, J.,
    5. Froestl, W.,
    6. Beck, P.,
    7. Mosbacher, J.,
    8. Bischoff, S.,
    9. Kulik, A.,
    10. Shigemoto, R. and
    11. et al.
    (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuner, R.,
    2. Kohr, G.,
    3. Grunewald, S.,
    4. Eisenhardt, G.,
    5. Bach, A. and
    6. Kornau, H. C.
    (1999). Role of heteromer formation in GABAB receptor function. Science 283, 74–77
    OpenUrlAbstract/FREE Full Text
    1. Kunishima, N.,
    2. Shimada, Y.,
    3. Tsuji, Y.,
    4. Sato, T.,
    5. Yamamoto, M.,
    6. Nakanishi, S.,
    7. Jingami, H. and
    8. Morikawa, K.
    (2000). Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee, S. P.,
    2. O'Dowd, B. F.,
    3. Ng, G. Y.,
    4. Varghese, G.,
    5. Akil, H.,
    6. Mansour, A.,
    7. Nguyen, T. and
    8. George, S. R.
    (2000). Inhibitation of cell suface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol. Pharmacol 58, 120–128
    OpenUrlAbstract/FREE Full Text
    1. Maggio, R.,
    2. Vogel, Z. and
    3. Wess, J.
    (1993). Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular ‘cross-talk’ between G-protein-linked receptors. Proc. Nat. Acad. Sci. USA 90, 3103–3107
    OpenUrlAbstract/FREE Full Text
    1. Maggio, R.,
    2. Barbier, P.,
    3. Fornai, F. and
    4. Corsini, G. U.
    (1996). Functional role of the third cytoplasmic loop in muscarinic receptor dimerization. J. Biol. Chem 271, 31055–31060
    OpenUrlAbstract/FREE Full Text
    1. Margeta-Mitrovic, M.,
    2. Jan, Y. N. and
    3. Jan, L. Y.
    (2000). A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27, 97–106
    OpenUrlCrossRefPubMedWeb of Science
    1. Marshall, F. H.,
    2. Jones, K. A.,
    3. Kaupmann, K. and
    4. Bettler, B.
    (1999). GABABreceptors—the first 7TM heterodimers. Trends Pharmacol. Sci 20, 396–399
    OpenUrlCrossRefPubMed
    1. Martin, S. C.,
    2. Russek, S. J. and
    3. Farb, D. H.
    (1999). Molecular identification of the human GABABR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABABR1. Mol. Cell. Neurosci 13, 180–191
    OpenUrlCrossRefPubMedWeb of Science
    1. Mijares, A.,
    2. Lebesgue, D.,
    3. Wallukat, G. and
    4. Hoebeke, J.
    (2000). From agonist to antagonist: Fab fragments of an agonist-like monoclonal anti-2-adrenoceptor antibody behave as antagonists. Mol.Pharmacol 58, 373–379
    OpenUrlAbstract/FREE Full Text
    1. Milligan, G.
    (2000). Receptors as kissing cousins. Science 288, 65–67
    OpenUrlFREE Full Text
    1. Mohler, H. and
    2. Fritschy, J.-M.
    (1999). GABABreceptors make it to the top—as dimers. Trends Pharmacol. Sci 20, 87–89
    OpenUrlCrossRefPubMed
    1. Monnot, C.,
    2. Bihoreau, C.,
    3. Conchon, S.,
    4. Curnow, K. M.,
    5. Corvol, P. and
    6. Clauser, E.
    (1996). Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two deficient mutants. J. Biol. Chem 271, 1507–1513
    OpenUrlAbstract/FREE Full Text
    1. Morello, J. P.,
    2. Salahpour, A.,
    3. Laperriere, A.,
    4. Bernier, V.,
    5. Arthus, M. F.,
    6. Lonergan, M.,
    7. Petaja-Repo, U.,
    8. Angers, S.,
    9. Morin, D.,
    10. Bichet, D. G. and
    11. Bouvier, M.
    (2000). Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest 105, 887–895
    OpenUrlCrossRefPubMedWeb of Science
    1. Nakanishi-Matsui, M.,
    2. Zheng, Y.-W.,
    3. Suiciner, D. J.,
    4. Weiss, E. J.,
    5. Ludeman, M. J. and
    6. Coughlin, S. R.
    (2000). PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609–613
    OpenUrlCrossRefPubMedWeb of Science
    1. Ng, G.Y.,
    2. O'Dowd, B. F.,
    3. Lee, S. P.,
    4. Chung, H. T.,
    5. Brann, M. R.,
    6. Seeman, P. and
    7. George, S. R.
    (1996). Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem. Biophys. Res. Commun 227, 200–204
    OpenUrlCrossRefPubMedWeb of Science
    1. Ng, G.Y.,
    2. Clark, J.,
    3. Coulombe, N.,
    4. Ethier, N.,
    5. Hebert, T. E.,
    6. Sullivan, R.,
    7. Kargman, S.,
    8. Chateauneuf, A.,
    9. Tsukamoto, N.,
    10. McDonald, T. and
    11. et al.
    (1999). Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem 274, 7607–7610
    OpenUrlAbstract/FREE Full Text
    1. Nimchinsky, E. A.,
    2. Hof, P. R.,
    3. Janssen, W. G. M.,
    4. Morrison, J. H. and
    5. Schmauss, C.
    (1997). Expression of dopamine D3receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem 272, 29229–29237
    OpenUrlAbstract/FREE Full Text
    1. O'Brien, P. J.,
    2. Prevost, N.,
    3. Molino, M. M.,
    4. Hollinger, K.,
    5. Woolkalis, M. J.,
    6. Woulfe, D. S. and
    7. Brass., L. F.
    (2000). Thrombin responses in human endothelial cells. J.Biol. Chem 275, 13502–13509
    OpenUrlAbstract/FREE Full Text
    1. Overton, M. C. and
    2. Blumer, K. J.
    (2000). G-protein-coupled receptors function as oligomers in vivo. Curr. Biol 10, 341–344
    OpenUrlCrossRefPubMedWeb of Science
    1. Palczewski, K.,
    2. Kumasaka, T.,
    3. Hori, T.,
    4. Behnke, C. A.,
    5. Motoshima, H.,
    6. Fox, B. A.,
    7. Trong, I. L.,
    8. Teller, D. C.,
    9. Okada, T.,
    10. Stenkamp, R. E. and
    11. et al.
    (2000). Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745
    OpenUrlAbstract/FREE Full Text
    1. Petaja-Repo, U. E.,
    2. Hogue, M.,
    3. Laperriere, A.,
    4. Walker, P. and
    5. Bouvier, M.
    (2000). Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J. Biol. Chem 275, 13727–13736
    OpenUrlAbstract/FREE Full Text
    1. Ray, K. and
    2. Hauschild, B. C.
    (2000). Cys-140 is critical for metabotrophic glutamate receptor-1 (mGluR-1) dimerization. J. Biol. Chem 275, 34245–34251
    OpenUrlAbstract/FREE Full Text
    1. Rocheville, M.,
    2. Lange, D. C.,
    3. Kumar, U.,
    4. Sasi, R.,
    5. Patel, R. C. and
    6. Patel, Y. C.
    (2000). Subtypes of the somatostatin receptor assemble as functional homo-and heterodimers. J. Biol. Chem 275, 7862–7869
    OpenUrlAbstract/FREE Full Text
    1. Rocheville, M.,
    2. Lange, D. C.,
    3. Kumar, U.,
    4. Patel, S. C.,
    5. Patel, R. C. and
    6. Patel, Y. C.
    (2000). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157
    OpenUrlAbstract/FREE Full Text
    1. Romano, C.,
    2. Yang, W.-L. and
    3. O'Malley, K. L.
    (1996). Metabolic glutamate Receptor 5 Is a disulfide-linked dimer. J. Biol. Chem 271, 28612–28616
    OpenUrlAbstract/FREE Full Text
    1. Romano, C.,
    2. Miller, J. K.,
    3. Hyrc, K.,
    4. Dikranian, S.,
    5. Mennerick, S.,
    6. Takeuchi, Y.,
    7. Goldberg., M. P. and
    8. O'Malley, K. L.
    (2001). Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu(5) dimerization. Mol. Pharmacol 59, 46–53
    OpenUrlAbstract/FREE Full Text
    1. Scarselli, M.,
    2. Armogida, M.,
    3. Chiacchio, S.,
    4. DeMontis, M. G.,
    5. Colzi, A.,
    6. Corsini, G. U. and
    7. Maggio, R.
    (2000). Reconstitution of functional dopamine D(2s) receptor by co-expression of amino and carboxyl-terminal receptor fragments. Eur. J. Pharmacol 397, 291–296
    OpenUrlCrossRefPubMed
    1. Schoneberg, T.,
    2. Yun, J.,
    3. Wenkert, D. and
    4. Wess, J.
    (1996). Functional rescue of mutant V2 vasopressin receptors causing nephrogenic diabetes insipidus by a co-expressed receptor polypeptide. EMBO J 15, 1283–1291
    OpenUrlPubMedWeb of Science
    1. Schulz, A.,
    2. Grosse, R.,
    3. Schultz, G.,
    4. Gudermann, T. and
    5. Schoneberg, T.
    (2000). Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J. Biol. Chem 275, 2381–2389
    OpenUrlAbstract/FREE Full Text
    1. Tsuji, Y.,
    2. Shimada, Y.,
    3. Takeshita, T.,
    4. Kajimura, N.,
    5. Nomura, S.,
    6. Sekiyama, N.,
    7. Otomo, J.,
    8. Usukura, J.,
    9. Nakanishi, S. and
    10. Jingami, H.
    (2000). Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem 275, 28144–28151
    OpenUrlAbstract/FREE Full Text
    1. Vila-Coro, A. J.,
    2. Rodriguez-Frade, J. M.,
    3. Martin De Ana, A.,
    4. Moreno-Ortiz, M. C.,
    5. Martinez, A. C. and
    6. Mellado, M.
    (1999). The chemokine SDF-1triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13, 1699–1710
    OpenUrlAbstract/FREE Full Text
    1. White, J. H.,
    2. Wise, A.,
    3. Main, M. J.,
    4. Green, A.,
    5. Fraser, N. J.,
    6. Disney, G. H.,
    7. Barnes, A. A.,
    8. Emson, P.,
    9. Foord, S. M. and
    10. Marshall, F. H.
    (1998). Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396, 679–682
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson, S.,
    2. Bergsma, D. J.,
    3. Chambers, J. K.,
    4. Muir, A. I.,
    5. Fantom, K. G.,
    6. Ellis, C.,
    7. Murdock, P. R.,
    8. Herrity, N. C. and
    9. Stadel, J. M.
    (1998). Orphan G-protein-coupled receptors: the next generation of drug targets?. Br. J. Pharmacol 125, 1387–1392
    OpenUrlCrossRefPubMedWeb of Science
    1. Yesilaltay, A. and
    2. Jenness, D. D.
    (2000). Homo-oligomeric complexes of the yeast alpha-factor pheromone receptor are functional units of endocytosis. Mol. Biol. Cell 11, 2873–2884
    OpenUrlAbstract/FREE Full Text
    1. Zeng, F.-Y. and
    2. Wess, J.
    (1999). Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem 274, 19487–19497
    OpenUrlAbstract/FREE Full Text
    1. Zhu, X. and
    2. Wess, J.
    (1998). Truncated V2 vasopressin receptors as negative regulators of wild-type V2 receptor function. Biochemistry 37, 15773–15784
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Oligomerisation of G-protein-coupled receptors
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Oligomerisation of G-protein-coupled receptors
G. Milligan
Journal of Cell Science 2001 114: 1265-1271;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Oligomerisation of G-protein-coupled receptors
G. Milligan
Journal of Cell Science 2001 114: 1265-1271;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • The cytoplasmic fate of mRNA
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992