Introduction
Histone N-termini (tails) undergo diverse post-translational modifications,
including acetylation, phosphorylation, methylation, ubiquitination and
ADP-ribosylation (van Holde,
1988; Wolffe,
1998). The discoveries of enzymes that perform these modifications
and of chromatin-associated proteins that selectively bind to
position-specific histone modifications
(Strahl and Allis, 2000;
Jenuwein and Allis, 2001)
reveals that modified histone N-termini can significantly extend the
information potential of the genetic code. Moreover, they appear to index
chromatin regions, facilitating epigenetic control, lineage commitment and the
overall functional organisation of
chromosomes.⇓
Acetylation (Roth et al.,
2001) and arginine methylation
(Stallcup, 2001) have been
linked mainly with transcriptional stimulation. Phosphorylation
(Cheung et al., 2000a) instead
is a marker for activation of immediate early genes and a signal for mitotic
chromatin condensation. Here, we focus on histone lysine methylation. The
roles of acetylation, phosphorylation and methylation are summarized in
Table 1, and discussion of the
interplay between these distinct modifications can be found elsewhere
(Zhang and Reinberg, 2001;
Berger, 2002;
Kouzarides, 2002).
Table 1.
Histone acetylation, phosphorylation and methylation
The complexity of histone lysine methylation
At least five methylatable lysine positions exist in the N-termini of
histones H3 (K4, K9, K27, K36) and H4 (K20); another occurs in the
histone-fold domain of histone H3 (K79)
(Feng et al., 2002;
Lacoste et al., 2002;
Ng et al., 2002;
van Leeuwen et al., 2002).
For clarity, we focus on H3-K4, H3-K9 and H3-K27 methylation to illustrate the
general principles and complexities involved.
The mammalian Suv39h enzymes and their S. pombe homologue, Clr4,
were the first histone lysine methyltransferases (HMTases) identified
(Rea et al., 2000). The
conserved SET-domain of the Su(var)3-9-related HMTases catalyzes the
methylation of H3-K9, creating a high-affinity binding site for the
chromodomain of heterochromatin protein 1 (HP1) proteins
(Lachner and Jenuwein, 2002).
Other methylatable lysine positions might also be marked by position-specific
SET-domain HMTases for methyl-binding chromodomain proteins. The human and
mouse genomes each encode ≥50 predicted SET-domain proteins
(Kouzarides, 2002) and ≥30
chromodomain-containing sequences (A. Schleiffer and F. Eisenhaber, personal
communication). By contrast, S. pombe has only ∼10 putative SET
domain HMTases, and S. cerevisiae has not more than seven
(Briggs et al., 2001). Lysine
residues are mono-, di- and tri-methylated in vivo
(Paik and Kim, 1971;
van Holde, 1988;
Waterborg, 1993). A
progressive conversion towards tri-methylation could contribute to the
apparent stability of histone lysine methylation and is ideally suited to
imparting additional layers of combinatorial control, which might allow both
short-term and long-term chromatin imprints.
The poster shows the dynamic cycle of histone lysine methylation in
transcriptional stimulation or repression. `Exit routes' from this cycle
reveal more extended reprogramming of the chromatin structure – for
example, during cellular senescence, Polycomb-mediated transcriptional memory,
X chromosome inactivation and constitutive heterochromatin formation. In this
`road map', the various destinations for a chromatin region are indicated by
road signs that reflect distinct methylation positions and states.
Transcriptional regulation – going around with H3-K4 and
H3-K9
In euchromatic regions, binding of transcription factors to specific
promoter/enhancer sequences is the initiating step in altering a naive
chromatin template. If positively acting complexes prevail, promoter-proximal
nucleosomes sequentially adopt an activation-specific modification profile
(Urnov and Wolffe, 2001;
Zhang and Reinberg, 2001;
Berger, 2002;
Daujat et al., 2002). Fully
activated promoters appear to be enriched in tri-methylated H3-K4
(Santos-Rosa et al., 2002);
basal transcription correlates with H3-K4 dimethylation, although the
methylation potential of the HMTases involved needs to be defined
(Briggs et al., 2001;
Nishioka et al., 2002a;
Wang et al., 2001a;
Santos-Rosa et al., 2002).
H3-K9 methylation, by contrast, is present mainly in silenced chromatin
domains (Noma et al., 2001;
Litt et al., 2001), and the
`activated genome' of S. cerevisiae exhibits abundant H3-K4
methylation but lacks apparent H3-K9 di-methylation
(Briggs et al., 2001).
Recruitment of several H3-K9-specific HMTases induces gene repression within
euchromatin (Tachibana et al.,
2001; Nielsen et al.,
2001; Vandel et al.,
2001; Ogawa et al.,
2002; Schultz et al.,
2002; Tachibana et al.,
2002; Yang et al.,
2002). G9a and a closely related enzyme appear to be euchromatic
HMTases that form complexes with HP1γ and a subset of E2F transcription
factors (Ogawa et al., 2002).
These enzymes might, by default, repress target promoters that fail to recruit
additional activating complexes.
In proliferating cells and for G9a-mediated in vivo methylation, the
repressive signal appears to be primarily H3-K9 di-methylation
(Tachibana et al., 2002) (A.
H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished), although in vitro
G9a methylates both H3-K9 and H3-K27. Differences between H3-K9 di- and
tri-methylation patterns could underpin the more robust association of
inhibitory complexes with the promoters of several cell cycle genes, as cells
enter senescence (S. Lowe, personal communication) or have their growth
potential restricted by the tumor suppressor Rb, which could recruit
additional repressive HMTases (Nielsen et
al., 2001).
For histone lysine methylation, no `direct' demethylase has been described.
Although intermediary enzymes could destabilise the amino-methyl bond by
oxidation or radical attack (Chinenov,
2002; Falnes et al.,
2002; Trewick et al.,
2002), reversion of an engaged chromatin region to a more naive
state might instead be triggered by transcription-coupled histone replacement,
in which the histone H3.3 variant is deposited in place of modified histone H3
(Ahmad and Henikoff, 2002a).
This mechanism does not operate in transcriptionally silent domains, which
might explain turnover of methylated histones in euchromatic regions while
allowing persistence of histone methylation in constitutive heterochromatin
(Ahmad and Henikoff,
2002b).
Polycomb and trithorax – keeping on track with H3-K27 and
H3-K4
During differentiation, `transcriptional memory' maintains the expression
status of certain key regulatory genes over many cell division cycles. This
depends on the antagonistic function of polycomb (Pc-G) and trithorax (trx-G)
group proteins (Orlando and Paro,
1995; Pirrotta,
1998). The Pc-G protein enhancer of zeste [E(z)] contains a SET
domain and becomes an HMTase when complexed with another early-acting Pc-G
protein, extra sex combs (Esc). The Drosophila E(z)-Esc complex
(Czermin et al., 2002;
Müller et al., 2002) and
its mammalian Ezh-Eed counterpart (Cao et
al., 2002; Kuzmichev et al.,
2002) have an apparent preference for H3-K27 but might also target
H3-K9. Ezh/Eed-mediated nucleosome methylation increases in vitro binding of
the chromodomain protein polycomb (PC)
(Czermin et al., 2002;
Kuzmichev et al., 2002). In
E(z) mutants, methylation of H3-K27, and probably also H3-K9, is impaired–
in a manner suggesting that extended H3-K27 di- and tri-methylation
across several nucleosomes (Cao et al.,
2002) or dual tri-methylation of H3-K27 and H3-K9
[(Czermin et al., 2002) R.
Paro, personal communication] might induce stable recruitment of Pc-G
complexes. The E(z) HMTase complex could be developmentally regulated such
that a di-methylating activity prepares histones for a tri-methylating
activity, which propagates transcriptional memory. Fully defining the in vivo
methyl mark(s) involved, however, requires the development of highly specific
H3-K27 and H3-K9 antibodies.
Long-term maintenance of active transcriptional states is regulated by
trx-G proteins. The trx-G proteins Trx/MLL
(Milne et al., 2002;
Nakamura et al., 2002) and
Ash-1 each contain a SET domain and display HMTase activity. Whereas a Trx
complex performs H3-K4 di-methylation
(Czermin et al., 2002;
Milne et al., 2002;
Nakamura et al., 2002), Ash-1
can methylate H3-K4, H3-K9 and probably also H4-K20
(Beisel et al., 2002).
Ash-1-mediated methylation apparently prevents binding of the repressive PC
and HP1 proteins but facilitates association of the Brahma coactivator
(Beisel et al., 2002) –
another trx-G protein and a component of nucleosome-mobilising machines.
Indeed, H3-K4 methylation can trigger recruitment of the Brahma-related ISWI
ATPase (T. Kouzarides, personal communication). Thus, trx-G HMTases may allow
propagation of an activated chromatin state by `neutralising' repressive marks
(e.g. H3-K9 and H4-K20 methylation) (Fang
et al., 2002; Nishioka et al.,
2002b), while simultaneously coupling a positive signal (H3-K4
methylation) with chromatin remodelling.
X-inactivation – choosing an exit with H3-K9 and H3-K27
Dosage compensation in female mammals involves chromosome-wide inactivation
of one X-chromosome (Avner and Heard,
2001). H3-K9 methylation is associated with the inactive X
chromosome (Xi) (Boggs et al.,
2002; Peters et al.,
2002; Heard et al.,
2001; Mermoud et al.,
2002), but H3-K27 tri-methylation might also be a prominent, if
not the major, mark (Silva et al.,
2003; Plath et al.,
2003) (A. H. Peters, S. Kubicek, L. Perez-Burgos et al.,
unpublished). Pronounced H3-K27 tri-methylation at the Xi would be consistent
with the finding that X-inactivation is independent of Suv39h HMTases and does
not require HP1 proteins (Peters et al.,
2002). The HMTases that target the Xi, particularly for random
X-inactivation, are unidentified. A likely candidate for initiating early
methylation imprints is the Ezh-Eed complex, because both Ezh2
(Mak et al., 2002) and Eed
(Wang et al., 2001c)
accumulate at the Xi during imprinted X-inactivation. However, in contrast to
Pc-G-mediated gene silencing, there is no evidence for stable association of
PC or other Pc-G complexes at the Xi
(Silva et al., 2003).
Differences in H3-K27 and H3-K9 methylation could discriminate between
Pc-G-dependent repression (extended H3-K27 di- and tri-methylation or a
combination of H3-K9 tri- and H3-K27 tri-methylation?) and X-inactivation (a
combination of H3-K9 di- and H3-K27 tri-methylation?). Alternatively, the
Xist RNA could provide an additional signal for recruitment of other,
Xi-restricted HMTases and associated silencing complexes. This would be
similar to Xist-dependent accumulation of BRCA1
(Ganesan et al., 2002) and
preclude occupancy by the PC system and HP1 proteins. Subtle differences in
the methylation state of lysine positions might also be associated with
allele-specific imprinting (Xin et al.,
2001; Fournier et al.,
2002; Xin et al.,
2003).
Constitutive heterochromatin – a one-way street to H3-K9
tri-methylation?
Unlike euchromatin, constitutive heterochromatin lacks apparent
transcription units, and instead contains arrays of satellite repeats
(Karpen and Allshire, 1997;
Csink and Henikoff, 1998).
Such repeats appear to give rise – through the RNAi machinery – to
small heterochromatic RNAs (shRNAs)
(Volpe et al., 2002;
Hall et al., 2002;
Partridge et al., 2002;
Mochizuki et al., 2002;
Taverna et al., 2002). These
or other RNAs (Maison et al.,
2002) might pair with the underlying DNA sequences and bind to
chromodomain-like adaptor proteins (Akhtar
et al., 2000a) that could recruit Su(var)3-9-related HMTases
(Jenuwein, 2002). The H3-K9
methylation signal would then be stabilised and propagated by `interlocking'
HP1 molecules to form an extended heterochromatic domain
(Nakayama et al., 2001;
Hall et al., 2002).
Furthermore, H3-K9 methylation can trigger DNA methylation in Neurospora
crassa (Tamaru and Selker,
2001) and Arabidopsis thaliana
(Jackson et al., 2002), and a
similar pathway directs DNA methylation at pericentric satellite repeats in
mammals (B. Lehnertz, Y. Ueda, A. A. Derijck et al., unpublished). The
combination of histone- and DNA-methylation systems
(Fahrner et al., 2002;
Nguyen et al., 2002;
Fuks et al., 2003) probably
stabilises silent chromatin domains, safe-guarding gene expression programmes
and protecting genome integrity.
Pericentric heterochromatin is enriched in tri-methylated H3-K9. This
profile is selectively abolished upon disruption of Suv39h HMTases, whereas
centromeric regions display Suv39h-independent H3-K9 di-methylation (A. H.
Peters, S. Kubicek, L. Perez-Burgos et al., unpublished). Interestingly, in
Suv39h dn cells, pericentric heterochromatin exhibits significant H3-K9
mono-methylation (A. H. Peters, S. Kubicek, L. Perez-Burgos et al.,
unpublished). Suv39h HMTases are thus tri-methylating enzymes that can convert
intermediary methylation states (mono- or di-methylation) into the apparently
more stable tri-methylation end state. Regional H3-K9 tri-methylation at
transcriptionally inert chromatin domains therefore appears to be a robust
hallmark of constitutive heterochromatin.
Outlook
The above examples highlight the exquisite complexity and coding potential
of histone lysine methylation in epigenetic control. Position- and
state-specific methylation antibodies
(Santos-Rosa et al., 2002) (A.
H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished) and the solved
3D-structures of several SET domain enzymes
(Trievel et al., 2002;
Wilson et al., 2002;
Zhang et al., 2002;
Jacobs et al., 2002;
Min et al., 2002) have started
to reveal the functions of mono- (SET7/9;
Xiao et al., 2003), di- [G9a
(Tachibana et al., 2002) (A.
H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished)] and
tri-methylating HMTases [Suv39h (A. H. Peters, S. Kubicek, L. Perez-Burgos et
al., unpublished)]. Although the `rules of the road' highlighted in this
poster focused on basic mechanisms of transcriptional regulation and
chromosome organisation, histone lysine methylation probably affects most
chromatin-templated processes – from cell proliferation and
tumorigenesis (Varambally et al.,
2002) to imprinting, X-inactivation, lineage commitment
(Su et al., 2003), aging,
stem cell plasticity and the epigenetic reprogramming of the genome.
Acknowledgments
We thank David Allis, Renato Paro, Tony Kouzarides, Neil Brockdorff, Steven
Gamblin and Scott Lowe for helpful discussions and for allowing us to cite
work prior to its publication. Research in T.J.'s laboratory is supported by
the IMP through Boehringer Ingelheim and by funds from the Vienna Economy
Promotion Fund (WWFF), an EU-network grant and the Austrian GEN-AU
initiative.
- © The Company of Biologists Limited
2003
References
- ↵
Ahmad, K. and Henikoff, S. (2002a). The histone
variant H3.3 marks active chromatin by replication-independent nucleosome
assembly. Mol. Cell 9,1191
-1200.
- ↵
Ahmad, K. and Henikoff, S. (2002b). Epigenetic
consequences of nucleosome dynamics. Cell
111,281
-284.
- ↵
Akhtar, A., Zink, D. and Becker, P. B. (2000a).
Chromodomains are protein-RNA interaction modules.
Nature 407,405
-409.
- ↵
Akhtar, A. and Becker, P. B. (2000b).
Activation of transcription through histone H4 acetylation by MOF, an
acetyltransferase essential for dosage compensation in Drosophila.
Mol. Cell 5,367
-375.
- ↵
Allard, S., Utley, R. T., Savard, J., Clarke, A., Grant, P.,
Brandl, C. J., Pillus, L., Workman, J. L. and Cote, J.
(1999). NuA4, an essential transcription adaptor/histone H4
acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p.
EMBO J. 18,5108
-5119.
- ↵
Avner, P. and Heard, E. (2001). X-chromosome
inactivation: counting, choice and initiation. Nat. Rev.
Genet. 2,59
-67.
- ↵
Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A.,
Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001).
Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo
domain. Nature 410,120
-124.
- ↵
Bauer, U. M., Daujat, S., Nielsen, S. J., Nightingale, K. and
Kouzarides, T. (2002). Methylation at arginine 17 of histone
H3 is linked to gene activation. EMBO J.
3, 39-44.
- ↵
Beisel, C., Imhof, A., Greene, J., Kremmer, E. and Sauer, F.
(2002). Histone methylation by the Drosophila epigenetic
transcriptional regulator Ash1. Nature
419,857
-862.
- ↵
Berger, S. L. (2002). Histone modifications in
transcriptional regulation. Curr. Opin. Genet. Dev.
12,142
-148.
- ↵
Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R.,
Bouman, P., Liu, J. S., Kouzarides, T. and Schreiber, S. L.
(2002). Methylation of histone H3 Lys 4 in coding regions of
active genes. Proc. Natl. Acad. Sci. USA
99,8695
-8700.
- ↵
Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault,
A. C. and Allis, C. D. (2002). Differentially methylated
forms of histone H3 show unique association patterns with inactive human X
chromosomes. Nat. Genet
30, 73-76 (published
online 10 Dec. 2001).
- ↵
Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J.
K., Dent, S. Y., Winston, F. and Allis, C. D. (2001). Histone
H3 lysine 4 methylation is mediated by Set1 and required for cell growth and
rDNA silencing in Saccharomyces cerevisiae. Genes Dev.
15,3286
-3295.
- ↵
Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R.,
Edmondson, D. G., Roth, S. Y. and Allis, C. D. (1996).
Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking
histone acetylation to gene activation. Cell
84,843
-851.
- ↵
Bryk, M., Briggs, S. D., Strahl, B. D., Curcio, M. J., Allis, C.
D. and Winston, F. (2002). Evidence that Set1, a Factor
Required for Methylation of Histone H3, Regulates rDNA Silencing in S.
cerevisiae by a Sir2-Independent Mechanism. Curr.
Biol. 12,165
-170.
- ↵
Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H.,
Tempst, P., Jones, R. S. and Zhang, Y. (2002). Role of
histone H3 lysine 27 methylation in Polycomb-group silencing.
Science 298,1039
-1043.
- ↵
Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter,
B. T., Aswad, D. W. and Stallcup, M. R. (1999). Regulation of
transcription by a protein methyltransferase. Science
284,2174
-2177.
- ↵
Cheung, P., Allis, C. D. and Sassone-Corsi, P.
(2000a). Signaling to chromatin through histone modifications.
Cell 103,263
-271.
- ↵
Cheung, P., Tanner, K. G., Cheung, W. L., Sassone-Corsi, P.,
Denu, J. M. and Allis, C. D. (2000b). Synergistic coupling of
histone H3 phosphorylation and acetylation in response to epidermal growth
factor stimulation. Mol. Cell
5, 905-915.
- ↵
Chinenov, Y. (2002). A second catalytic domain
in the Elp3 histone acetyltransferases: a candidate for histone demethylase
activity? Trends Biochem. Sci.
27,115
-117.
- ↵
Clarke, A. S., Lowell, J. E., Jacobson, S. J. and Pillus, L.
(1999). Esa1p is an essential histone acetyltransferase required
for cell cycle progression. Mol. Cell Biol.
19,2515
-2526.
- ↵
Clayton, A. L., Rose, S., Barratt, M. J. and Mahadevan, L.
C. (2000). Phosphoacetylation of histone H3 on c-fos- and
c-jun-associated nucleosomes upon gene activation. EMBO
J. 19,3714
-3726.
- ↵
Csink, A. K. and Henikoff, S. (1998). Something
from nothing: the evolution and utility of satellite repeats.
Trends Genet. 14,200
-204.
- ↵
Czermin, B., Schotta, G., Hulsmann, B. B., Brehm, A., Becker, P.
B., Reuter, G. and Imhof, A. (2001). Physical and functional
association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO
Rep. 2,915
-919.
- ↵
Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A. and
Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC
complexes have a histone H3 methyltransferase activity that marks chromosomal
Polycomb sites. Cell
111,185
-196.
- ↵
Daujat, S., Bauer, U. M., Shah, V., Turner, B., Berger, S. and
Kouzarides, T. (2002). Crosstalk between CARM1 Methylation
and CBP Acetylation on Histone H3. Curr. Biol.
12,2090
-2097.
- ↵
De Souza, C. P., Osmani, A. H., Wu, L. P., Spotts, J. L. and
Osmani, S. A. (2000). Mitotic histone H3 phosphorylation by
the NIMA kinase in Aspergillus nidulans. Cell
102,293
-302.
- ↵
Fahrner, J. A., Eguchi, S., Herman, J. G. and Baylin, S. B.
(2002). Dependence of histone modifications and gene expression
on DNA hypermethylation in cancer. Cancer Res.
62,7213
-7218.
- ↵
Falnes, P. O., Johansen, R. F. and Seeberg, E.
(2002). AlkB-mediated oxidative demethylation reverses DNA damage
in Escherichia coli. Nature
419,178
-182.
- ↵
Fang, J., Feng, Q., Ketel, C. S., Wang, H., Cao, R., Xia, L.,
Erdjument-Bromage, H., Tempst, P., Simon, J. A. and Zhang, Y.
(2002). Purification and functional characterization of SET8, a
nucleosomal histone H4-lysine 20-specific methyltransferase. Curr.
Biol. 12,1086
-1099.
- ↵
Feng, Q., Wang, H., Ng, H. H., Erdjument-Bromage, H., Tempst,
P., Struhl, K. and Zhang, Y. (2002). Methylation of H3-lysine
79 is mediated by a new family of HMTases without a SET domain.
Curr. Biol. 12,1052
-1058.
- ↵
Fournier, C., Goto, Y., Ballestar, E., Delaval, K., Hever, A.
M., Esteller, M. and Feil, R. (2002). Allele-specific histone
lysine methylation marks regulatory regions at imprinted mouse genes.
EMBO J. 21,6560
-6570.
- ↵
Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P. and
Kouzarides, T. (2003). The methyl-CpG-binding protein MeCP2
links DNA methylation to histone methylation. J. Biol.
Chem. 278,4035
-4040.
- ↵
Ganesan, S., Silver, D. P., Greenberg, R. A., Avni, D., Drapkin,
R., Miron, A., Mok, S. C., Randrianarison, V., Brodie, S., Salstrom, J. et
al. (2002). BRCA1 supports XIST RNA concentration on the
inactive X chromosome. Cell
111,393
-405.
- ↵
Goto, H., Tomono, Y., Ajiro, K., Kosako, H., Fujita, M.,
Sakurai, M., Okawa, K., Iwamatsu, A., Okigaki, T., Takahashi, T. et al.
(1999). Identification of a novel phosphorylation site on histone
H3 coupled with mitotic chromosome condensation. J. Biol.
Chem. 274,25543
-25549.
- ↵
Goto, H., Yasui, Y., Nigg, E. A. and Inagaki, M.
(2002). Aurora-B phosphorylates Histone H3 at serine28 with
regard to the mitotic chromosome condensation. Genes
Cells 7,11
-17.
- ↵
Grant, P. A., Eberharter, A., John, S., Cook, R. G., Turner, B.
M. and Workman, J. L. (1999). Expanded lysine acetylation
specificity of Gcn5 in native complexes. J. Biol.
Chem. 274,5895
-5900.
- ↵
Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N.,
Cohen, A. and Grewal, S. I. (2002). Establishment and
maintenance of a heterochromatin domain. Science
297,2232
-2237.
- ↵
Heard, E., Rougeulle, C., Arnaud, D., Avner, P., Allis, C. D.
and Spector, D. L. (2001). Methylation of histone H3 at Lys-9
is an early mark on the X chromosome during X inactivation.
Cell 107,727
-738.
- ↵
Hsu, J. Y., Sun, Z. W., Li, X., Reuben, M., Tatchell, K.,
Bishop, D. K., Grushcow, J. M., Brame, C. J., Caldwell, J. A., Hunt, D. F. et
al. (2000). Mitotic phosphorylation of histone H3 is governed
by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes.
Cell 102,279
-291.
- ↵
Jackson, J. P., Lindroth, A. M., Cao, X. and Jacobsen, S. E.
(2002). Control of CpNpG DNA methylation by the KRYPTONITE
histone H3 methyltransferase. Nature
416,556
-560.
- ↵
Jacobs, S. A., Harp, J. M., Devarakonda, S., Kim, Y.,
Rastinejad, F. and Khorasanizadeh, S. (2002). The active site
of the SET domain is constructed on a knot. Nat. Struct.
Biol. 9,833
-838.
- ↵
Jenuwein, T. and Allis, C. D. (2001).
Translating the histone code. Science
293,1074
-1080.
- ↵
Jenuwein, T. (2002). Molecular biology. An
RNA-guided pathway for the epigenome. Science
297,2215
-2218.
- ↵
Jin, Y., Wang, Y., Walker, D. L., Dong, H., Conley, C.,
Johansen, J. and Johansen, K. M. (1999). JIL-1: a novel
chromosomal tandem kinase implicated in transcriptional regulation in
Drosophila. Mol. Cell 4,129
-135.
- ↵
Karpen, G. H. and Allshire, R. C. (1997). The
case for epigenetic effects on centromere identity and function.
Trends Genet. 13,489
-496.
- ↵
Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K.,
Nakatani, Y. and Yokoyama, K. K. (2000). ATF-2 has intrinsic
histone acetyltransferase activity which is modulated by phosphorylation.
Nature 405,195
-200.
- ↵
Kleff, S., Andrulis, E. D., Anderson, C. W. and Sternglanz,
R. (1995). Identification of a gene encoding a yeast histone
H4 acetyltransferase. J. Biol. Chem.
270,24674
-24677.
- ↵
Kouzarides, T. (2002). Histone methylation in
transcriptional control. Curr. Opin. Genet. Dev.
12,198
-209.
- ↵
Kuo, M. H., Brownell, J. E., Sobel, R. E., Ranalli, T. A., Cook,
R. G., Edmondson, D. G., Roth, S. Y. and Allis, C. D. (1996).
Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific
lysines. Nature 383,269
-272.
- ↵
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P.
and Reinberg, D. (2002). Histone methyltransferase activity
associated with a human multiprotein complex containing the Enhancer of Zeste
protein. Genes Dev. 16,2893
-2905.
- ↵
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein,
T. (2001). Methylation of histone H3 lysine 9 creates a
binding site for HP1 proteins. Nature
410,116
-120.
- ↵
Lachner, M. and Jenuwein, T. (2002). The many
faces of histone lysine methylation. Curr. Opin. Cell
Biol. 14,286
-298.
- ↵
Lacoste, N., Utley, R. T., Hunter, J. M., Poirier, G. G. and
Cote, J. (2002). Disruptor of telomeric silencing-1 is a
chromatin-specific histone H3 methyltransferase. J. Biol.
Chem. 277,30421
-30424.
- ↵
Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. and
Felsenfeld, G. (2001). Correlation between histone lysine
methylation and developmental changes at the chicken beta-globin locus.
Science 293,2453
-2455.
-
Lo, W. S., Trievel, R. C., Rojas, J. R., Duggan, L., Hsu, J. Y.,
Allis, C. D., Marmorstein, R. and Berger, S. L. (2000).
Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and
in vivo to Gcn5-mediated acetylation at lysine 14. Mol.
Cell 5,917
-926.
- ↵
Lo, W. S., Duggan, L., Tolga, N. C., Emre, Belotserkovskya, R.,
Lane, W. S., Shiekhattar, R. and Berger, S. L. (2001).
Snf1–a histone kinase that works in concert with the histone
acetyltransferase Gcn5 to regulate transcription.
Science 293,1142
-1146.
- ↵
Ma, H., Baumann, C. T., Li, H., Strahl, B. D., Rice, R.,
Jelinek, M. A., Aswad, D. W., Allis, C. D., Hager, G. L. and Stallcup, M.
R. (2001). Hormone-dependent, CARM1-directed,
arginine-specific methylation of histone H3 on a steroid-regulated promoter.
Curr. Biol. 11,1981
-1985.
- ↵
Maison, C., Bailly, D., Peters, A. H., Quivy, J. P., Roche, D.,
Taddei, A., Lachner, M., Jenuwein, T. and Almouzni, G.
(2002). Higher-order structure in pericentric heterochromatin
involves a distinct pattern of histone modification and an RNA component.
Nat. Genet. 30,329
-334.
- ↵
Mak, W., Baxter, J., Silva, J., Newall, A. E., Otte, A. P. and
Brockdorff, N. (2002). Mitotically stable association of
polycomb group proteins eed and enx1 with the inactive x chromosome in
trophoblast stem cells. Curr. Biol.
12,1016
-1020.
- ↵
Mermoud, J. E., Popova, B., Peters, A. H., Jenuwein, T. and
Brockdorff, N. (2002). Histone H3 lysine 9 methylation occurs
rapidly at the onset of random X chromosome inactivation. Curr.
Biol. 12,247
-251.
- ↵
Milne, T. A., Briggs, S. D., Brock, H. W., Martin, M. E., Gibbs,
D., Allis, C. D. and Hess, J. L. (2002). MLL targets SET
domain methyltransferase activity to Hox gene promoters. Mol.
Cell 10,1107
-1117.
- ↵
Min, J., Zhang, X., Cheng, X., Grewal, S. I. and Xu, R. M.
(2002). Structure of the SET domain histone lysine
methyltransferase Clr4. Nat. Struct. Biol.
9, 828-832.
- ↵
Mizzen, C. A., Yang, X. J., Kokubo, T., Brownell, J. E.,
Bannister, A. J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S. L.,
Kouzarides, T. et al. (1996). The TAF(II)250 subunit of TFIID
has histone acetyltransferase activity. Cell
87,1261
-1270.
- ↵
Mochizuki, K., Fine, N. A., Fujisawa, T. and Gorovsky, M. A.
(2002). Analysis of a piwi-related gene implicates small RNAs in
genome rearrangement in tetrahymena. Cell
110,689
-699.
- ↵
Müller, J., Hart, C. M., Francis, N. J., Vargas, M. L.,
Sengupta, A., Wild, B., Miller, E. L., O'Connor, M. B., Kingston, R. E. and
Simon, J. A. (2002). Histone methyltransferase activity of a
Drosophila Polycomb group repressor complex. Cell
111,197
-208.
- ↵
Nagy, P. L., Griesenbeck, J., Kornberg, R. D. and Cleary, M.
L. (2002). A trithorax-group complex purified from
Saccharomyces cerevisiae is required for methylation of histone H3.
Proc. Natl. Acad. Sci. USA
99, 90-94.
- ↵
Nakamura, T., Mori, T., Tada, S., Krajewski, W., Rozovskaia, T.,
Wassell, R., Dubois, G., Mazo, A., Croce, C. M. and Canaani, E.
(2002). ALL-1 is a histone methyltransferase that assembles a
supercomplex of proteins involved in transcriptional regulation.
Mol. Cell 10,1119
-1128.
- ↵
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. and
Grewal, S. I. (2001). Role of histone H3 lysine 9 methylation
in epigenetic control of heterochromatin assembly.
Science 292,110
-113.
- ↵
Ng, H. H., Feng, Q., Wang, H., Erdjument-Bromage, H., Tempst,
P., Zhang, Y. and Struhl, K. (2002). Lysine methylation
within the globular domain of histone H3 by Dot1 is important for telomeric
silencing and Sir protein association. Genes Dev.
16,1518
-1527.
- ↵
Nguyen, C. T., Weisenberger, D. J., Velicescu, M., Gonzales, F.
A., Lin, J. C., Liang, G. and Jones, P. A. (2002). Histone
H3-lysine 9 methylation is associated with aberrant gene silencing in cancer
cells and is rapidly reversed by 5-aza-2′-deoxycytidine.
Cancer Res. 62,6456
-6461.
- ↵
Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J.,
Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera,
R. E. et al. (2001). Rb targets histone H3 methylation and
HP1 to promoters. Nature
412,561
-565.
- ↵
Nishioka, K., Chuikov, S., Sarma, K., Erdjument-Bromage, H.,
Allis, C. D., Tempst, P. and Reinberg, D. (2002a). Set9, a
novel histone H3 methyltransferase that facilitates transcription by
precluding histone tail modifications required for heterochromatin formation.
Genes Dev. 16,479
-489.
- ↵
Nishioka, K., Rice, J. C., Sarma, K., Erdjument-Bromage, H.,
Werner, J., Wang, Y., Chuikov, S., Valenzuela, P., Tempst, P., Steward, R. et
al. (2002b). PR-Set7 is a nucleosome-specific
methyltransferase that modifies lysine 20 of histone H4 and is associated with
silent chromatin. Mol. Cell
9,1201
-1213.
- ↵
Noma, K., Allis, C. D. and Grewal, S. I.
(2001). Transitions in distinct histone H3 methylation patterns
at the heterochromatin domain boundaries. Science
293,1150
-1155.
- ↵
O'Carroll, D., Scherthan, H., Peters, A. H., Opravil, S.,
Haynes, A. R., Laible, G., Rea, S., Schmid, M., Lebersorger, A., Jerratsch, M.
et al. (2000). Isolation and characterization of Suv39h2, a
second histone H3 methyltransferase gene that displays testis-specific
expression. Mol. Cell Biol.
20,9423
-9433.
- ↵
Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. and
Nakatani, Y. (2002). A complex with chromatin modifiers that
occupies E2F- and Myc-responsive genes in G0 cells.
Science 296,1132
-1136.
- ↵
Orlando, V. and Paro, R. (1995). Chromatin
multiprotein complexes involved in the maintenance of transcription patterns.
Curr. Opin. Genet. Dev.
5, 174-179.
- ↵
Paik, W. K. and Kim, S. (1971). Protein
methylation. Science
174,114
-119.
- ↵
Parthun, M. R., Widom, J. and Gottschling, D. E.
(1996). The major cytoplasmic histone acetyltransferase in yeast:
links to chromatin replication and histone metabolism.
Cell 87,85
-94.
- ↵
Partridge, J. F., Scott, K. S., Bannister, A. J., Kouzarides, T.
and Allshire, R. C. (2002). cis-acting DNA from fission yeast
centromeres mediates histone H3 methylation and recruitment of silencing
factors and cohesin to an ectopic site. Curr. Biol.
12,1652
-1660.
- ↵
Peters, A. H., O'Carroll, D., Scherthan, H., Mechtler, K.,
Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M.,
Kohlmaier, A. et al. (2001). Loss of the Suv39h histone
methyltransferases impairs mammalian heterochromatin and genome stability.
Cell 107,323
-337.
- ↵
Peters, A. H., Mermoud, J. E., O'Carroll, D., Pagani, M.,
Schweizer, D., Brockdorff, N. and Jenuwein, T. (2002).
Histone H3 lysine 9 methylation is an epigenetic imprint of facultative
heterochromatin. Nat. Genet.
30, 77-80 (published
online 10 Dec. 2001).
- ↵
Pirrotta, V. (1998). Polycombing the genome:
PcG, trxG, and chromatin silencing. Cell
93,333
-336.
- ↵
Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R.,
Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B. and
Zhang, Y. (2003). Role of histone H3 lysine 27 methylation in
X inactivation. Science
300,131
-135.
- ↵
Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D., Sun, Z.
W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. et
al. (2000). Regulation of chromatin structure by
site-specific histone H3 methyltransferases. Nature
406,593
-599.
- ↵
Rice, J. C., Nishioka, K., Sarma, K., Steward, R., Reinberg, D.
and Allis, C. D. (2002). Mitotic-specific methylation of
histone H4 Lys 20 follows increased PR-Set7 expression and its localization to
mitotic chromosomes. Genes Dev.
16,2225
-2230.
- ↵
Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W. W., Wilm,
M., Aasland, R. and Stewart, A. F. (2001). The Saccharomyces
cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3
lysine 4. EMBO J. 20,7137
-7148.
- ↵
Roth, S. Y., Denu, J. M. and Allis, C. D.
(2001). Histone acetyltransferases. Annu. Rev.
Biochem. 70,81
-120.
- ↵
Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J.,
Bernstein, B. E., Emre, N. C., Schreiber, S. L., Mellor, J. and Kouzarides,
T. (2002). Active genes are tri-methylated at K4 of histone
H3. Nature 419,407
-411.
- ↵
Sassone-Corsi, P., Mizzen, C. A., Cheung, P., Crosio, C.,
Monaco, L., Jacquot, S., Hanauer, A. and Allis, C. D. (1999).
Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of
histone H3. Science 285,886
-891.
- ↵
Schiltz, R. L., Mizzen, C. A., Vassilev, A., Cook, R. G., Allis,
C. D. and Nakatani, Y. (1999). Overlapping but distinct
patterns of histone acetylation by the human coactivators p300 and PCAF within
nucleosomal substrates. J. Biol. Chem.
274,1189
-1192.
- ↵
Schotta, G., Ebert, A., Krauss, V., Fischer, A., Hoffmann, J.,
Rea, S., Jenuwein, T., Dorn, R. and Reuter, G. (2002).
Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and
heterochromatic gene silencing. EMBO J.
21,1121
-1131.
- ↵
Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. and
Rauscher, F. J., 3rd (2002). SETDB1: a novel KAP-1-associated
histone H3, lysine 9-specific methyltransferase that contributes to
HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins.
Genes Dev. 16,919
-932.
- ↵
Schurter, B. T., Koh, S. S., Chen, D., Bunick, G. J., Harp, J.
M., Hanson, B. L., Henschen-Edman, A., Mackay, D. R., Stallcup, M. R. and
Aswad, D. W. (2001). Methylation of histone H3 by
coactivator-associated arginine methyltransferase 1.
Biochemistry 40,5747
-5756.
- ↵
Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T. B.,
Webster, Z., Peters, A. H., Jenuwein, T., Otte, A. P. and Brockdorff, N.
(2003). Establishment of histone H3 methylation on the inactive X
chromosome requires transient recruitment of Eed-Enx1 polycomb group
complexes. Dev. Cell 4,481
-495.
- ↵
Smith, E. R., Eisen, A., Gu, W., Sattah, M., Pannuti, A., Zhou,
J., Cook, R. G., Lucchesi, J. C. and Allis, C. D. (1998).
ESA1 is a histone acetyltransferase that is essential for growth in yeast.
Proc. Natl. Acad. Sci. USA
95,3561
-3565.
- ↵
Smith, E. R., Pannuti, A., Gu, W., Steurnagel, A., Cook, R. G.,
Allis, C. D. and Lucchesi, J. C. (2000). The drosophila MSL
complex acetylates histone H4 at lysine 16, a chromatin modification linked to
dosage compensation. Mol. Cell Biol.
20,312
-318.
- ↵
Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. and
Allis, C. D. (1995). Conservation of deposition-related
acetylation sites in newly synthesized histones H3 and H4. Proc.
Natl. Acad. Sci. USA 92,1237
-1241.
- ↵
Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou,
J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J. et
al. (1997). Steroid receptor coactivator-1 is a histone
acetyltransferase. Nature
389,194
-198.
- ↵
Stallcup, M. R. (2001). Role of protein
methylation in chromatin remodeling and transcriptional regulation.
Oncogene 20,3014
-3020.
- ↵
Strahl, B. D., Ohba, R., Cook, R. G. and Allis, C. D.
(1999). Methylation of histone H3 at lysine 4 is highly conserved
and correlates with transcriptionally active nuclei in Tetrahymena.
Proc. Natl. Acad. Sci. USA
96,14967
-14972.
- ↵
Strahl, B. D. and Allis, C. D. (2000). The
language of covalent histone modifications. Nature
403, 41-45.
- ↵
Strahl, B. D., Briggs, S. D., Brame, C. J., Caldwell, J. A.,
Koh, S. S., Ma, H., Cook, R. G., Shabanowitz, J., Hunt, D. F., Stallcup, M. R.
et al. (2001). Methylation of histone H4 at arginine 3 occurs
in vivo and is mediated by the nuclear receptor coactivator PRMT1.
Curr. Biol. 11,996
-1000.
- ↵
Strahl, B. D., Grant, P. A., Briggs, S. D., Sun, Z. W., Bone, J.
R., Caldwell, J. A., Mollah, S., Cook, R. G., Shabanowitz, J., Hunt, D. F. et
al. (2002). Set2 is a nucleosomal histone H3-selective
methyltransferase that mediates transcriptional repression. Mol.
Cell Biol. 22,1298
-1306.
- ↵
Su, I. H., Basavaraj, A., Krutchinsky, A. N., Hobert, O.,
Ullrich, A., Chait, B. T. and Tarakhovsky, A. (2003). Ezh2
controls B cell development through histone H3 methylation and Igh
rearrangement. Nat. Immunol.
4, 124-131.
- ↵
Tachibana, M., Sugimoto, K., Fukushima, T. and Shinkai, Y.
(2001). Set domain-containing protein, G9a, is a novel
lysine-preferring mammalian histone methyltransferase with hyperactivity and
specific selectivity to lysines 9 and 27 of histone H3. J. Biol.
Chem. 276,25309
-25317.
- ↵
Tachibana, M., Sugimoto, K., Nozaki, M., Ueda, J., Ohta, T.,
Ohki, M., Fukuda, M., Takeda, N., Niida, H., Kato, H. et al.
(2002). G9a histone methyltransferase plays a dominant role in
euchromatic histone H3 lysine 9 methylation and is essential for early
embryogenesis. Genes Dev.
16,1779
-1791.
- ↵
Tamaru, H. and Selker, E. U. (2001). A histone
H3 methyltransferase controls DNA methylation in Neurospora crassa.
Nature 414,277
-283.
- ↵
Taverna, S. D., Coyne, R. S. and Allis, C. D.
(2002). Methylation of histone H3 at lysine 9 targets programmed
DNA elimination in Tetrahymena. Cell
110,701
-711.
- ↵
Thomson, S., Clayton, A. L., Hazzalin, C. A., Rose, S., Barratt,
M. J. and Mahadevan, L. C. (1999). The nucleosomal response
associated with immediate-early gene induction is mediated via alternative MAP
kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO
J. 18,4779
-4793.
- ↵
Trewick, S. C., Henshaw, T. F., Hausinger, R. P., Lindahl, T.
and Sedgwick, B. (2002). Oxidative demethylation by
Escherichia coli AlkB directly reverts DNA base damage.
Nature 419,174
-178.
- ↵
Trievel, R. C., Beach, B. M., Dirk, L. M., Houtz, R. L. and
Hurley, J. H. (2002). Structure and catalytic mechanism of a
SET domain protein methyltransferase. Cell
111,91
-103.
- ↵
Urnov, F. D. and Wolffe, A. P. (2001).
Chromatin remodeling and transcriptional activation: the cast (in order of
appearance). Oncogene
20,2991
-3006.
- ↵
van Holde, K. E. (1988).
Chromatin. New York: Springer Verlag.
- ↵
van Leeuwen, F., Gafken, P. R. and Gottschling, D. E.
(2002). Dot1p modulates silencing in yeast by methylation of the
nucleosome core. Cell
109,745
-756.
- ↵
Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S.
and Trouche, D. (2001). Transcriptional repression by the
retinoblastoma protein through the recruitment of a histone methyltransferase.
Mol. Cell Biol. 21,6484
-6494.
- ↵
Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R.,
Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte,
A. P. et al. (2002). The polycomb group protein EZH2 is
involved in progression of prostate cancer. Nature
419,624
-629.
- ↵
Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I.
and Martienssen, R. A. (2002). Regulation of heterochromatic
silencing and histone H3 lysine-9 methylation by RNAi.
Science 297,1833
-1837.
- ↵
Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Borchers, C.,
Tempst, P. and Zhang, Y. (2001a). Purification and functional
characterization of a histone H3-lysine 4-specific methyltransferase.
Mol. Cell 8,1207
-1217.
- ↵
Wang, Y., Zhang, W., Jin, Y., Johansen, J. and Johansen, K.
M. (2001b). The JIL-1 tandem kinase mediates histone H3
phosphorylation and is required for maintenance of chromatin structure in
Drosophila. Cell 105,433
-443.
- ↵
Wang, J., Mager, J., Chen, Y., Schneider, E., Cross, J. C.,
Nagy, A. and Magnuson, T. (2001c). Imprinted X inactivation
maintained by a mouse Polycomb group gene. Nat. Genet.
28,371
-375.
- ↵
Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage,
H., Strahl, B. D., Briggs, S. D., Allis, C. D., Wong, J., Tempst, P. et
al. (2001d). Methylation of histone H4 at arginine 3
facilitating transcriptional activation by nuclear hormone receptor.
Science 293,853
-857.
- ↵
Waterborg, J. H. (1993). Dynamic methylation of
alfalfa histone H3. J. Biol. Chem.
268,4918
-4921.
- ↵
Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. and Allis, C. D.
(1999). Phosphorylation of histone H3 is required for proper
chromosome condensation and segregation. Cell
97, 99-109.
- ↵
Wilson, J. R., Jing, C., Walker, P. A., Martin, S. R., Howell,
S. A., Blackburn, G. M., Gamblin, S. J. and Xiao, B. (2002).
Crystal structure and functional the histone methyltransferase SET7/9.
Cell 111,105
-115.
- ↵
Wolffe, A. P. (1998). Chromatin:
Structure and Function. San Diego: Academic Press.
- ↵
Xiao, B., Jing, C., Wilson, J. R., Walker, P. A., Vasisht, N.,
Kelly, G., Howell, S., Taylor, I. A., Blackburn, G. M. and Gamblin, S. J.
(2003). Structure and catalytic mechanism of the human histone
methyltransferase SET7/9. Nature
421,652
-656.
- ↵
Xin, Z., Allis, C. D. and Wagstaff, J. (2001).
Parent-specific complementary patterns of histone H3 lysine 9 and H3 lysine 4
methylation at the Prader-Willi syndrome imprinting center. Am. J.
Hum. Genet. 69,1389
-1394.
- ↵
Xin, Z., Tachibana, M., Guggiari, M., Heard, E., Shinkai, Y. and
Wagstaff, J. (2003). Role of histone methyltransferase G9a in
CpG methylation of the Prader-Willi syndrome imprinting center. J.
Biol. Chem. Feb 13 (epub ahead of print).
- ↵
Yang, L., Xia, L., Wu, D. Y., Wang, H., Chansky, H. A.,
Schubach, W. H., Hickstein, D. D. and Zhang, Y. (2002).
Molecular cloning of ESET, a analysis novel of histone H3-specific
methyltransferase that interacts with ERG transcription factor.
Oncogene 21,148
-152.
- ↵
Zegerman, P., Canas, B., Pappin, D. and Kouzarides, T.
(2002). Histone H3 lysine 4 methylation disrupts binding of
nucleosome remodeling and deacetylase (NuRD) repressor complex. J.
Biol. Chem. 277,11621
-11624.
- ↵
Zhang, Y. and Reinberg, D. (2001).
Transcription regulation by histone methylation: interplay between different
covalent modifications of the core histone tails. Genes
Dev. 15,2343
-2360.
- ↵
Zhang, X., Tamaru, H., Khan, S. I., Horton, J. R., Keefe, L. J.,
Selker, E. U. and Cheng, X. (2002). Structure of the
Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase.
Cell 111,117
-127.