Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Cell Science at a Glance
An epigenetic road map for histone lysine methylation
Monika Lachner, Roderick J. O'Sullivan, Thomas Jenuwein
Journal of Cell Science 2003 116: 2117-2124; doi: 10.1242/jcs.00493
Monika Lachner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roderick J. O'Sullivan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Jenuwein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

Introduction

Histone N-termini (tails) undergo diverse post-translational modifications, including acetylation, phosphorylation, methylation, ubiquitination and ADP-ribosylation (van Holde, 1988; Wolffe, 1998). The discoveries of enzymes that perform these modifications and of chromatin-associated proteins that selectively bind to position-specific histone modifications (Strahl and Allis, 2000; Jenuwein and Allis, 2001) reveals that modified histone N-termini can significantly extend the information potential of the genetic code. Moreover, they appear to index chromatin regions, facilitating epigenetic control, lineage commitment and the overall functional organisation of chromosomes.⇓

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Acetylation (Roth et al., 2001) and arginine methylation (Stallcup, 2001) have been linked mainly with transcriptional stimulation. Phosphorylation (Cheung et al., 2000a) instead is a marker for activation of immediate early genes and a signal for mitotic chromatin condensation. Here, we focus on histone lysine methylation. The roles of acetylation, phosphorylation and methylation are summarized in Table 1, and discussion of the interplay between these distinct modifications can be found elsewhere (Zhang and Reinberg, 2001; Berger, 2002; Kouzarides, 2002).

View this table:
  • View inline
  • View popup
Table 1.

Histone acetylation, phosphorylation and methylation

The complexity of histone lysine methylation

At least five methylatable lysine positions exist in the N-termini of histones H3 (K4, K9, K27, K36) and H4 (K20); another occurs in the histone-fold domain of histone H3 (K79) (Feng et al., 2002; Lacoste et al., 2002; Ng et al., 2002; van Leeuwen et al., 2002). For clarity, we focus on H3-K4, H3-K9 and H3-K27 methylation to illustrate the general principles and complexities involved.

The mammalian Suv39h enzymes and their S. pombe homologue, Clr4, were the first histone lysine methyltransferases (HMTases) identified (Rea et al., 2000). The conserved SET-domain of the Su(var)3-9-related HMTases catalyzes the methylation of H3-K9, creating a high-affinity binding site for the chromodomain of heterochromatin protein 1 (HP1) proteins (Lachner and Jenuwein, 2002). Other methylatable lysine positions might also be marked by position-specific SET-domain HMTases for methyl-binding chromodomain proteins. The human and mouse genomes each encode ≥50 predicted SET-domain proteins (Kouzarides, 2002) and ≥30 chromodomain-containing sequences (A. Schleiffer and F. Eisenhaber, personal communication). By contrast, S. pombe has only ∼10 putative SET domain HMTases, and S. cerevisiae has not more than seven (Briggs et al., 2001). Lysine residues are mono-, di- and tri-methylated in vivo (Paik and Kim, 1971; van Holde, 1988; Waterborg, 1993). A progressive conversion towards tri-methylation could contribute to the apparent stability of histone lysine methylation and is ideally suited to imparting additional layers of combinatorial control, which might allow both short-term and long-term chromatin imprints.

The poster shows the dynamic cycle of histone lysine methylation in transcriptional stimulation or repression. `Exit routes' from this cycle reveal more extended reprogramming of the chromatin structure – for example, during cellular senescence, Polycomb-mediated transcriptional memory, X chromosome inactivation and constitutive heterochromatin formation. In this `road map', the various destinations for a chromatin region are indicated by road signs that reflect distinct methylation positions and states.

Transcriptional regulation – going around with H3-K4 and H3-K9

In euchromatic regions, binding of transcription factors to specific promoter/enhancer sequences is the initiating step in altering a naive chromatin template. If positively acting complexes prevail, promoter-proximal nucleosomes sequentially adopt an activation-specific modification profile (Urnov and Wolffe, 2001; Zhang and Reinberg, 2001; Berger, 2002; Daujat et al., 2002). Fully activated promoters appear to be enriched in tri-methylated H3-K4 (Santos-Rosa et al., 2002); basal transcription correlates with H3-K4 dimethylation, although the methylation potential of the HMTases involved needs to be defined (Briggs et al., 2001; Nishioka et al., 2002a; Wang et al., 2001a; Santos-Rosa et al., 2002).

H3-K9 methylation, by contrast, is present mainly in silenced chromatin domains (Noma et al., 2001; Litt et al., 2001), and the `activated genome' of S. cerevisiae exhibits abundant H3-K4 methylation but lacks apparent H3-K9 di-methylation (Briggs et al., 2001). Recruitment of several H3-K9-specific HMTases induces gene repression within euchromatin (Tachibana et al., 2001; Nielsen et al., 2001; Vandel et al., 2001; Ogawa et al., 2002; Schultz et al., 2002; Tachibana et al., 2002; Yang et al., 2002). G9a and a closely related enzyme appear to be euchromatic HMTases that form complexes with HP1γ and a subset of E2F transcription factors (Ogawa et al., 2002). These enzymes might, by default, repress target promoters that fail to recruit additional activating complexes.

In proliferating cells and for G9a-mediated in vivo methylation, the repressive signal appears to be primarily H3-K9 di-methylation (Tachibana et al., 2002) (A. H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished), although in vitro G9a methylates both H3-K9 and H3-K27. Differences between H3-K9 di- and tri-methylation patterns could underpin the more robust association of inhibitory complexes with the promoters of several cell cycle genes, as cells enter senescence (S. Lowe, personal communication) or have their growth potential restricted by the tumor suppressor Rb, which could recruit additional repressive HMTases (Nielsen et al., 2001).

For histone lysine methylation, no `direct' demethylase has been described. Although intermediary enzymes could destabilise the amino-methyl bond by oxidation or radical attack (Chinenov, 2002; Falnes et al., 2002; Trewick et al., 2002), reversion of an engaged chromatin region to a more naive state might instead be triggered by transcription-coupled histone replacement, in which the histone H3.3 variant is deposited in place of modified histone H3 (Ahmad and Henikoff, 2002a). This mechanism does not operate in transcriptionally silent domains, which might explain turnover of methylated histones in euchromatic regions while allowing persistence of histone methylation in constitutive heterochromatin (Ahmad and Henikoff, 2002b).

Polycomb and trithorax – keeping on track with H3-K27 and H3-K4

During differentiation, `transcriptional memory' maintains the expression status of certain key regulatory genes over many cell division cycles. This depends on the antagonistic function of polycomb (Pc-G) and trithorax (trx-G) group proteins (Orlando and Paro, 1995; Pirrotta, 1998). The Pc-G protein enhancer of zeste [E(z)] contains a SET domain and becomes an HMTase when complexed with another early-acting Pc-G protein, extra sex combs (Esc). The Drosophila E(z)-Esc complex (Czermin et al., 2002; Müller et al., 2002) and its mammalian Ezh-Eed counterpart (Cao et al., 2002; Kuzmichev et al., 2002) have an apparent preference for H3-K27 but might also target H3-K9. Ezh/Eed-mediated nucleosome methylation increases in vitro binding of the chromodomain protein polycomb (PC) (Czermin et al., 2002; Kuzmichev et al., 2002). In E(z) mutants, methylation of H3-K27, and probably also H3-K9, is impaired– in a manner suggesting that extended H3-K27 di- and tri-methylation across several nucleosomes (Cao et al., 2002) or dual tri-methylation of H3-K27 and H3-K9 [(Czermin et al., 2002) R. Paro, personal communication] might induce stable recruitment of Pc-G complexes. The E(z) HMTase complex could be developmentally regulated such that a di-methylating activity prepares histones for a tri-methylating activity, which propagates transcriptional memory. Fully defining the in vivo methyl mark(s) involved, however, requires the development of highly specific H3-K27 and H3-K9 antibodies.

Long-term maintenance of active transcriptional states is regulated by trx-G proteins. The trx-G proteins Trx/MLL (Milne et al., 2002; Nakamura et al., 2002) and Ash-1 each contain a SET domain and display HMTase activity. Whereas a Trx complex performs H3-K4 di-methylation (Czermin et al., 2002; Milne et al., 2002; Nakamura et al., 2002), Ash-1 can methylate H3-K4, H3-K9 and probably also H4-K20 (Beisel et al., 2002). Ash-1-mediated methylation apparently prevents binding of the repressive PC and HP1 proteins but facilitates association of the Brahma coactivator (Beisel et al., 2002) – another trx-G protein and a component of nucleosome-mobilising machines. Indeed, H3-K4 methylation can trigger recruitment of the Brahma-related ISWI ATPase (T. Kouzarides, personal communication). Thus, trx-G HMTases may allow propagation of an activated chromatin state by `neutralising' repressive marks (e.g. H3-K9 and H4-K20 methylation) (Fang et al., 2002; Nishioka et al., 2002b), while simultaneously coupling a positive signal (H3-K4 methylation) with chromatin remodelling.

X-inactivation – choosing an exit with H3-K9 and H3-K27

Dosage compensation in female mammals involves chromosome-wide inactivation of one X-chromosome (Avner and Heard, 2001). H3-K9 methylation is associated with the inactive X chromosome (Xi) (Boggs et al., 2002; Peters et al., 2002; Heard et al., 2001; Mermoud et al., 2002), but H3-K27 tri-methylation might also be a prominent, if not the major, mark (Silva et al., 2003; Plath et al., 2003) (A. H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished). Pronounced H3-K27 tri-methylation at the Xi would be consistent with the finding that X-inactivation is independent of Suv39h HMTases and does not require HP1 proteins (Peters et al., 2002). The HMTases that target the Xi, particularly for random X-inactivation, are unidentified. A likely candidate for initiating early methylation imprints is the Ezh-Eed complex, because both Ezh2 (Mak et al., 2002) and Eed (Wang et al., 2001c) accumulate at the Xi during imprinted X-inactivation. However, in contrast to Pc-G-mediated gene silencing, there is no evidence for stable association of PC or other Pc-G complexes at the Xi (Silva et al., 2003). Differences in H3-K27 and H3-K9 methylation could discriminate between Pc-G-dependent repression (extended H3-K27 di- and tri-methylation or a combination of H3-K9 tri- and H3-K27 tri-methylation?) and X-inactivation (a combination of H3-K9 di- and H3-K27 tri-methylation?). Alternatively, the Xist RNA could provide an additional signal for recruitment of other, Xi-restricted HMTases and associated silencing complexes. This would be similar to Xist-dependent accumulation of BRCA1 (Ganesan et al., 2002) and preclude occupancy by the PC system and HP1 proteins. Subtle differences in the methylation state of lysine positions might also be associated with allele-specific imprinting (Xin et al., 2001; Fournier et al., 2002; Xin et al., 2003).

Constitutive heterochromatin – a one-way street to H3-K9 tri-methylation?

Unlike euchromatin, constitutive heterochromatin lacks apparent transcription units, and instead contains arrays of satellite repeats (Karpen and Allshire, 1997; Csink and Henikoff, 1998). Such repeats appear to give rise – through the RNAi machinery – to small heterochromatic RNAs (shRNAs) (Volpe et al., 2002; Hall et al., 2002; Partridge et al., 2002; Mochizuki et al., 2002; Taverna et al., 2002). These or other RNAs (Maison et al., 2002) might pair with the underlying DNA sequences and bind to chromodomain-like adaptor proteins (Akhtar et al., 2000a) that could recruit Su(var)3-9-related HMTases (Jenuwein, 2002). The H3-K9 methylation signal would then be stabilised and propagated by `interlocking' HP1 molecules to form an extended heterochromatic domain (Nakayama et al., 2001; Hall et al., 2002). Furthermore, H3-K9 methylation can trigger DNA methylation in Neurospora crassa (Tamaru and Selker, 2001) and Arabidopsis thaliana (Jackson et al., 2002), and a similar pathway directs DNA methylation at pericentric satellite repeats in mammals (B. Lehnertz, Y. Ueda, A. A. Derijck et al., unpublished). The combination of histone- and DNA-methylation systems (Fahrner et al., 2002; Nguyen et al., 2002; Fuks et al., 2003) probably stabilises silent chromatin domains, safe-guarding gene expression programmes and protecting genome integrity.

Pericentric heterochromatin is enriched in tri-methylated H3-K9. This profile is selectively abolished upon disruption of Suv39h HMTases, whereas centromeric regions display Suv39h-independent H3-K9 di-methylation (A. H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished). Interestingly, in Suv39h dn cells, pericentric heterochromatin exhibits significant H3-K9 mono-methylation (A. H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished). Suv39h HMTases are thus tri-methylating enzymes that can convert intermediary methylation states (mono- or di-methylation) into the apparently more stable tri-methylation end state. Regional H3-K9 tri-methylation at transcriptionally inert chromatin domains therefore appears to be a robust hallmark of constitutive heterochromatin.

Outlook

The above examples highlight the exquisite complexity and coding potential of histone lysine methylation in epigenetic control. Position- and state-specific methylation antibodies (Santos-Rosa et al., 2002) (A. H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished) and the solved 3D-structures of several SET domain enzymes (Trievel et al., 2002; Wilson et al., 2002; Zhang et al., 2002; Jacobs et al., 2002; Min et al., 2002) have started to reveal the functions of mono- (SET7/9; Xiao et al., 2003), di- [G9a (Tachibana et al., 2002) (A. H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished)] and tri-methylating HMTases [Suv39h (A. H. Peters, S. Kubicek, L. Perez-Burgos et al., unpublished)]. Although the `rules of the road' highlighted in this poster focused on basic mechanisms of transcriptional regulation and chromosome organisation, histone lysine methylation probably affects most chromatin-templated processes – from cell proliferation and tumorigenesis (Varambally et al., 2002) to imprinting, X-inactivation, lineage commitment (Su et al., 2003), aging, stem cell plasticity and the epigenetic reprogramming of the genome.

Acknowledgments

We thank David Allis, Renato Paro, Tony Kouzarides, Neil Brockdorff, Steven Gamblin and Scott Lowe for helpful discussions and for allowing us to cite work prior to its publication. Research in T.J.'s laboratory is supported by the IMP through Boehringer Ingelheim and by funds from the Vienna Economy Promotion Fund (WWFF), an EU-network grant and the Austrian GEN-AU initiative.

Footnotes

  • This poster is dedicated to the memory of Alan Wolffe, an inspirational and integrative leader for the field of chromatin regulation and epigenetic control.

  • © The Company of Biologists Limited 2003

References

  1. ↵
    Ahmad, K. and Henikoff, S. (2002a). The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9,1191 -1200.
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    Ahmad, K. and Henikoff, S. (2002b). Epigenetic consequences of nucleosome dynamics. Cell 111,281 -284.
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    Akhtar, A., Zink, D. and Becker, P. B. (2000a). Chromodomains are protein-RNA interaction modules. Nature 407,405 -409.
    OpenUrlCrossRefPubMedWeb of Science
  4. ↵
    Akhtar, A. and Becker, P. B. (2000b). Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5,367 -375.
    OpenUrlCrossRefPubMedWeb of Science
  5. ↵
    Allard, S., Utley, R. T., Savard, J., Clarke, A., Grant, P., Brandl, C. J., Pillus, L., Workman, J. L. and Cote, J. (1999). NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18,5108 -5119.
    OpenUrlAbstract
  6. ↵
    Avner, P. and Heard, E. (2001). X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2,59 -67.
    OpenUrlCrossRefPubMedWeb of Science
  7. ↵
    Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410,120 -124.
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    Bauer, U. M., Daujat, S., Nielsen, S. J., Nightingale, K. and Kouzarides, T. (2002). Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO J. 3, 39-44.
    OpenUrlCrossRef
  9. ↵
    Beisel, C., Imhof, A., Greene, J., Kremmer, E. and Sauer, F. (2002). Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419,857 -862.
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    Berger, S. L. (2002). Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12,142 -148.
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J. S., Kouzarides, T. and Schreiber, S. L. (2002). Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99,8695 -8700.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C. and Allis, C. D. (2002). Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet 30, 73-76 (published online 10 Dec. 2001).
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J. K., Dent, S. Y., Winston, F. and Allis, C. D. (2001). Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15,3286 -3295.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y. and Allis, C. D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84,843 -851.
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    Bryk, M., Briggs, S. D., Strahl, B. D., Curcio, M. J., Allis, C. D. and Winston, F. (2002). Evidence that Set1, a Factor Required for Methylation of Histone H3, Regulates rDNA Silencing in S. cerevisiae by a Sir2-Independent Mechanism. Curr. Biol. 12,165 -170.
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R. S. and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298,1039 -1043.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T., Aswad, D. W. and Stallcup, M. R. (1999). Regulation of transcription by a protein methyltransferase. Science 284,2174 -2177.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    Cheung, P., Allis, C. D. and Sassone-Corsi, P. (2000a). Signaling to chromatin through histone modifications. Cell 103,263 -271.
    OpenUrlCrossRefPubMedWeb of Science
  19. ↵
    Cheung, P., Tanner, K. G., Cheung, W. L., Sassone-Corsi, P., Denu, J. M. and Allis, C. D. (2000b). Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905-915.
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    Chinenov, Y. (2002). A second catalytic domain in the Elp3 histone acetyltransferases: a candidate for histone demethylase activity? Trends Biochem. Sci. 27,115 -117.
    OpenUrlCrossRefPubMedWeb of Science
  21. ↵
    Clarke, A. S., Lowell, J. E., Jacobson, S. J. and Pillus, L. (1999). Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell Biol. 19,2515 -2526.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    Clayton, A. L., Rose, S., Barratt, M. J. and Mahadevan, L. C. (2000). Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19,3714 -3726.
    OpenUrlAbstract
  23. ↵
    Csink, A. K. and Henikoff, S. (1998). Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 14,200 -204.
    OpenUrlCrossRefPubMedWeb of Science
  24. ↵
    Czermin, B., Schotta, G., Hulsmann, B. B., Brehm, A., Becker, P. B., Reuter, G. and Imhof, A. (2001). Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2,915 -919.
    OpenUrlAbstract
  25. ↵
    Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A. and Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111,185 -196.
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    Daujat, S., Bauer, U. M., Shah, V., Turner, B., Berger, S. and Kouzarides, T. (2002). Crosstalk between CARM1 Methylation and CBP Acetylation on Histone H3. Curr. Biol. 12,2090 -2097.
    OpenUrlCrossRefPubMedWeb of Science
  27. ↵
    De Souza, C. P., Osmani, A. H., Wu, L. P., Spotts, J. L. and Osmani, S. A. (2000). Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102,293 -302.
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    Fahrner, J. A., Eguchi, S., Herman, J. G. and Baylin, S. B. (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res. 62,7213 -7218.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    Falnes, P. O., Johansen, R. F. and Seeberg, E. (2002). AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419,178 -182.
    OpenUrlCrossRefPubMedWeb of Science
  30. ↵
    Fang, J., Feng, Q., Ketel, C. S., Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Tempst, P., Simon, J. A. and Zhang, Y. (2002). Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12,1086 -1099.
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    Feng, Q., Wang, H., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Struhl, K. and Zhang, Y. (2002). Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12,1052 -1058.
    OpenUrlCrossRefPubMedWeb of Science
  32. ↵
    Fournier, C., Goto, Y., Ballestar, E., Delaval, K., Hever, A. M., Esteller, M. and Feil, R. (2002). Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J. 21,6560 -6570.
    OpenUrlAbstract
  33. ↵
    Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P. and Kouzarides, T. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278,4035 -4040.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    Ganesan, S., Silver, D. P., Greenberg, R. A., Avni, D., Drapkin, R., Miron, A., Mok, S. C., Randrianarison, V., Brodie, S., Salstrom, J. et al. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111,393 -405.
    OpenUrlCrossRefPubMedWeb of Science
  35. ↵
    Goto, H., Tomono, Y., Ajiro, K., Kosako, H., Fujita, M., Sakurai, M., Okawa, K., Iwamatsu, A., Okigaki, T., Takahashi, T. et al. (1999). Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274,25543 -25549.
    OpenUrlAbstract/FREE Full Text
  36. ↵
    Goto, H., Yasui, Y., Nigg, E. A. and Inagaki, M. (2002). Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7,11 -17.
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    Grant, P. A., Eberharter, A., John, S., Cook, R. G., Turner, B. M. and Workman, J. L. (1999). Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274,5895 -5900.
    OpenUrlAbstract/FREE Full Text
  38. ↵
    Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A. and Grewal, S. I. (2002). Establishment and maintenance of a heterochromatin domain. Science 297,2232 -2237.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    Heard, E., Rougeulle, C., Arnaud, D., Avner, P., Allis, C. D. and Spector, D. L. (2001). Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107,727 -738.
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    Hsu, J. Y., Sun, Z. W., Li, X., Reuben, M., Tatchell, K., Bishop, D. K., Grushcow, J. M., Brame, C. J., Caldwell, J. A., Hunt, D. F. et al. (2000). Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102,279 -291.
    OpenUrlCrossRefPubMedWeb of Science
  41. ↵
    Jackson, J. P., Lindroth, A. M., Cao, X. and Jacobsen, S. E. (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416,556 -560.
    OpenUrlCrossRefPubMedWeb of Science
  42. ↵
    Jacobs, S. A., Harp, J. M., Devarakonda, S., Kim, Y., Rastinejad, F. and Khorasanizadeh, S. (2002). The active site of the SET domain is constructed on a knot. Nat. Struct. Biol. 9,833 -838.
    OpenUrlCrossRefPubMedWeb of Science
  43. ↵
    Jenuwein, T. and Allis, C. D. (2001). Translating the histone code. Science 293,1074 -1080.
    OpenUrlAbstract/FREE Full Text
  44. ↵
    Jenuwein, T. (2002). Molecular biology. An RNA-guided pathway for the epigenome. Science 297,2215 -2218.
    OpenUrlFREE Full Text
  45. ↵
    Jin, Y., Wang, Y., Walker, D. L., Dong, H., Conley, C., Johansen, J. and Johansen, K. M. (1999). JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol. Cell 4,129 -135.
    OpenUrlCrossRefPubMedWeb of Science
  46. ↵
    Karpen, G. H. and Allshire, R. C. (1997). The case for epigenetic effects on centromere identity and function. Trends Genet. 13,489 -496.
    OpenUrlCrossRefPubMedWeb of Science
  47. ↵
    Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y. and Yokoyama, K. K. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405,195 -200.
    OpenUrlCrossRefPubMedWeb of Science
  48. ↵
    Kleff, S., Andrulis, E. D., Anderson, C. W. and Sternglanz, R. (1995). Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270,24674 -24677.
    OpenUrlAbstract/FREE Full Text
  49. ↵
    Kouzarides, T. (2002). Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12,198 -209.
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    Kuo, M. H., Brownell, J. E., Sobel, R. E., Ranalli, T. A., Cook, R. G., Edmondson, D. G., Roth, S. Y. and Allis, C. D. (1996). Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383,269 -272.
    OpenUrlCrossRefPubMedWeb of Science
  51. ↵
    Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16,2893 -2905.
    OpenUrlAbstract/FREE Full Text
  52. ↵
    Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410,116 -120.
    OpenUrlCrossRefPubMedWeb of Science
  53. ↵
    Lachner, M. and Jenuwein, T. (2002). The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14,286 -298.
    OpenUrlCrossRefPubMedWeb of Science
  54. ↵
    Lacoste, N., Utley, R. T., Hunter, J. M., Poirier, G. G. and Cote, J. (2002). Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277,30421 -30424.
    OpenUrlAbstract/FREE Full Text
  55. ↵
    Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. and Felsenfeld, G. (2001). Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293,2453 -2455.
    OpenUrlAbstract/FREE Full Text
  56. Lo, W. S., Trievel, R. C., Rojas, J. R., Duggan, L., Hsu, J. Y., Allis, C. D., Marmorstein, R. and Berger, S. L. (2000). Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5,917 -926.
    OpenUrlCrossRefPubMedWeb of Science
  57. ↵
    Lo, W. S., Duggan, L., Tolga, N. C., Emre, Belotserkovskya, R., Lane, W. S., Shiekhattar, R. and Berger, S. L. (2001). Snf1–a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293,1142 -1146.
    OpenUrlAbstract/FREE Full Text
  58. ↵
    Ma, H., Baumann, C. T., Li, H., Strahl, B. D., Rice, R., Jelinek, M. A., Aswad, D. W., Allis, C. D., Hager, G. L. and Stallcup, M. R. (2001). Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr. Biol. 11,1981 -1985.
    OpenUrlCrossRefPubMedWeb of Science
  59. ↵
    Maison, C., Bailly, D., Peters, A. H., Quivy, J. P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T. and Almouzni, G. (2002). Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30,329 -334.
    OpenUrlCrossRefPubMedWeb of Science
  60. ↵
    Mak, W., Baxter, J., Silva, J., Newall, A. E., Otte, A. P. and Brockdorff, N. (2002). Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr. Biol. 12,1016 -1020.
    OpenUrlCrossRefPubMedWeb of Science
  61. ↵
    Mermoud, J. E., Popova, B., Peters, A. H., Jenuwein, T. and Brockdorff, N. (2002). Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr. Biol. 12,247 -251.
    OpenUrlCrossRefPubMedWeb of Science
  62. ↵
    Milne, T. A., Briggs, S. D., Brock, H. W., Martin, M. E., Gibbs, D., Allis, C. D. and Hess, J. L. (2002). MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10,1107 -1117.
    OpenUrlCrossRefPubMedWeb of Science
  63. ↵
    Min, J., Zhang, X., Cheng, X., Grewal, S. I. and Xu, R. M. (2002). Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828-832.
    OpenUrlPubMedWeb of Science
  64. ↵
    Mizzen, C. A., Yang, X. J., Kokubo, T., Brownell, J. E., Bannister, A. J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S. L., Kouzarides, T. et al. (1996). The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87,1261 -1270.
    OpenUrlCrossRefPubMedWeb of Science
  65. ↵
    Mochizuki, K., Fine, N. A., Fujisawa, T. and Gorovsky, M. A. (2002). Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110,689 -699.
    OpenUrlCrossRefPubMedWeb of Science
  66. ↵
    Müller, J., Hart, C. M., Francis, N. J., Vargas, M. L., Sengupta, A., Wild, B., Miller, E. L., O'Connor, M. B., Kingston, R. E. and Simon, J. A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111,197 -208.
    OpenUrlCrossRefPubMedWeb of Science
  67. ↵
    Nagy, P. L., Griesenbeck, J., Kornberg, R. D. and Cleary, M. L. (2002). A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA 99, 90-94.
    OpenUrlAbstract/FREE Full Text
  68. ↵
    Nakamura, T., Mori, T., Tada, S., Krajewski, W., Rozovskaia, T., Wassell, R., Dubois, G., Mazo, A., Croce, C. M. and Canaani, E. (2002). ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10,1119 -1128.
    OpenUrlCrossRefPubMedWeb of Science
  69. ↵
    Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. and Grewal, S. I. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292,110 -113.
    OpenUrlAbstract/FREE Full Text
  70. ↵
    Ng, H. H., Feng, Q., Wang, H., Erdjument-Bromage, H., Tempst, P., Zhang, Y. and Struhl, K. (2002). Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16,1518 -1527.
    OpenUrlAbstract/FREE Full Text
  71. ↵
    Nguyen, C. T., Weisenberger, D. J., Velicescu, M., Gonzales, F. A., Lin, J. C., Liang, G. and Jones, P. A. (2002). Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res. 62,6456 -6461.
    OpenUrlAbstract/FREE Full Text
  72. ↵
    Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R. E. et al. (2001). Rb targets histone H3 methylation and HP1 to promoters. Nature 412,561 -565.
    OpenUrlCrossRefPubMedWeb of Science
  73. ↵
    Nishioka, K., Chuikov, S., Sarma, K., Erdjument-Bromage, H., Allis, C. D., Tempst, P. and Reinberg, D. (2002a). Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16,479 -489.
    OpenUrlAbstract/FREE Full Text
  74. ↵
    Nishioka, K., Rice, J. C., Sarma, K., Erdjument-Bromage, H., Werner, J., Wang, Y., Chuikov, S., Valenzuela, P., Tempst, P., Steward, R. et al. (2002b). PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9,1201 -1213.
    OpenUrlCrossRefPubMedWeb of Science
  75. ↵
    Noma, K., Allis, C. D. and Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293,1150 -1155.
    OpenUrlAbstract/FREE Full Text
  76. ↵
    O'Carroll, D., Scherthan, H., Peters, A. H., Opravil, S., Haynes, A. R., Laible, G., Rea, S., Schmid, M., Lebersorger, A., Jerratsch, M. et al. (2000). Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell Biol. 20,9423 -9433.
    OpenUrlAbstract/FREE Full Text
  77. ↵
    Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. and Nakatani, Y. (2002). A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296,1132 -1136.
    OpenUrlAbstract/FREE Full Text
  78. ↵
    Orlando, V. and Paro, R. (1995). Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev. 5, 174-179.
    OpenUrlCrossRefPubMed
  79. ↵
    Paik, W. K. and Kim, S. (1971). Protein methylation. Science 174,114 -119.
    OpenUrlFREE Full Text
  80. ↵
    Parthun, M. R., Widom, J. and Gottschling, D. E. (1996). The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87,85 -94.
    OpenUrlCrossRefPubMedWeb of Science
  81. ↵
    Partridge, J. F., Scott, K. S., Bannister, A. J., Kouzarides, T. and Allshire, R. C. (2002). cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol. 12,1652 -1660.
    OpenUrlCrossRefPubMedWeb of Science
  82. ↵
    Peters, A. H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A. et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107,323 -337.
    OpenUrlCrossRefPubMedWeb of Science
  83. ↵
    Peters, A. H., Mermoud, J. E., O'Carroll, D., Pagani, M., Schweizer, D., Brockdorff, N. and Jenuwein, T. (2002). Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 30, 77-80 (published online 10 Dec. 2001).
    OpenUrlCrossRefPubMedWeb of Science
  84. ↵
    Pirrotta, V. (1998). Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93,333 -336.
    OpenUrlCrossRefPubMedWeb of Science
  85. ↵
    Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B. and Zhang, Y. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science 300,131 -135.
    OpenUrlAbstract/FREE Full Text
  86. ↵
    Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406,593 -599.
    OpenUrlCrossRefPubMedWeb of Science
  87. ↵
    Rice, J. C., Nishioka, K., Sarma, K., Steward, R., Reinberg, D. and Allis, C. D. (2002). Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev. 16,2225 -2230.
    OpenUrlAbstract/FREE Full Text
  88. ↵
    Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W. W., Wilm, M., Aasland, R. and Stewart, A. F. (2001). The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20,7137 -7148.
    OpenUrlAbstract
  89. ↵
    Roth, S. Y., Denu, J. M. and Allis, C. D. (2001). Histone acetyltransferases. Annu. Rev. Biochem. 70,81 -120.
    OpenUrlCrossRefPubMedWeb of Science
  90. ↵
    Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., Schreiber, S. L., Mellor, J. and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419,407 -411.
    OpenUrlCrossRefPubMedWeb of Science
  91. ↵
    Sassone-Corsi, P., Mizzen, C. A., Cheung, P., Crosio, C., Monaco, L., Jacquot, S., Hanauer, A. and Allis, C. D. (1999). Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285,886 -891.
    OpenUrlAbstract/FREE Full Text
  92. ↵
    Schiltz, R. L., Mizzen, C. A., Vassilev, A., Cook, R. G., Allis, C. D. and Nakatani, Y. (1999). Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. 274,1189 -1192.
    OpenUrlAbstract/FREE Full Text
  93. ↵
    Schotta, G., Ebert, A., Krauss, V., Fischer, A., Hoffmann, J., Rea, S., Jenuwein, T., Dorn, R. and Reuter, G. (2002). Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21,1121 -1131.
    OpenUrlAbstract
  94. ↵
    Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. and Rauscher, F. J., 3rd (2002). SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16,919 -932.
    OpenUrlAbstract/FREE Full Text
  95. ↵
    Schurter, B. T., Koh, S. S., Chen, D., Bunick, G. J., Harp, J. M., Hanson, B. L., Henschen-Edman, A., Mackay, D. R., Stallcup, M. R. and Aswad, D. W. (2001). Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40,5747 -5756.
    OpenUrlCrossRefPubMed
  96. ↵
    Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T. B., Webster, Z., Peters, A. H., Jenuwein, T., Otte, A. P. and Brockdorff, N. (2003). Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4,481 -495.
    OpenUrlCrossRefPubMedWeb of Science
  97. ↵
    Smith, E. R., Eisen, A., Gu, W., Sattah, M., Pannuti, A., Zhou, J., Cook, R. G., Lucchesi, J. C. and Allis, C. D. (1998). ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Sci. USA 95,3561 -3565.
    OpenUrlAbstract/FREE Full Text
  98. ↵
    Smith, E. R., Pannuti, A., Gu, W., Steurnagel, A., Cook, R. G., Allis, C. D. and Lucchesi, J. C. (2000). The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell Biol. 20,312 -318.
    OpenUrlAbstract/FREE Full Text
  99. ↵
    Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. and Allis, C. D. (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92,1237 -1241.
    OpenUrlAbstract/FREE Full Text
  100. ↵
    Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J. et al. (1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389,194 -198.
    OpenUrlCrossRefPubMedWeb of Science
  101. ↵
    Stallcup, M. R. (2001). Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20,3014 -3020.
    OpenUrlCrossRefPubMedWeb of Science
  102. ↵
    Strahl, B. D., Ohba, R., Cook, R. G. and Allis, C. D. (1999). Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA 96,14967 -14972.
    OpenUrlAbstract/FREE Full Text
  103. ↵
    Strahl, B. D. and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41-45.
    OpenUrlCrossRefPubMedWeb of Science
  104. ↵
    Strahl, B. D., Briggs, S. D., Brame, C. J., Caldwell, J. A., Koh, S. S., Ma, H., Cook, R. G., Shabanowitz, J., Hunt, D. F., Stallcup, M. R. et al. (2001). Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11,996 -1000.
    OpenUrlCrossRefPubMedWeb of Science
  105. ↵
    Strahl, B. D., Grant, P. A., Briggs, S. D., Sun, Z. W., Bone, J. R., Caldwell, J. A., Mollah, S., Cook, R. G., Shabanowitz, J., Hunt, D. F. et al. (2002). Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell Biol. 22,1298 -1306.
    OpenUrlAbstract/FREE Full Text
  106. ↵
    Su, I. H., Basavaraj, A., Krutchinsky, A. N., Hobert, O., Ullrich, A., Chait, B. T. and Tarakhovsky, A. (2003). Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124-131.
    OpenUrlCrossRefPubMedWeb of Science
  107. ↵
    Tachibana, M., Sugimoto, K., Fukushima, T. and Shinkai, Y. (2001). Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276,25309 -25317.
    OpenUrlAbstract/FREE Full Text
  108. ↵
    Tachibana, M., Sugimoto, K., Nozaki, M., Ueda, J., Ohta, T., Ohki, M., Fukuda, M., Takeda, N., Niida, H., Kato, H. et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16,1779 -1791.
    OpenUrlAbstract/FREE Full Text
  109. ↵
    Tamaru, H. and Selker, E. U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414,277 -283.
    OpenUrlCrossRefPubMedWeb of Science
  110. ↵
    Taverna, S. D., Coyne, R. S. and Allis, C. D. (2002). Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110,701 -711.
    OpenUrlCrossRefPubMedWeb of Science
  111. ↵
    Thomson, S., Clayton, A. L., Hazzalin, C. A., Rose, S., Barratt, M. J. and Mahadevan, L. C. (1999). The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18,4779 -4793.
    OpenUrlAbstract
  112. ↵
    Trewick, S. C., Henshaw, T. F., Hausinger, R. P., Lindahl, T. and Sedgwick, B. (2002). Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419,174 -178.
    OpenUrlCrossRefPubMedWeb of Science
  113. ↵
    Trievel, R. C., Beach, B. M., Dirk, L. M., Houtz, R. L. and Hurley, J. H. (2002). Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111,91 -103.
    OpenUrlCrossRefPubMedWeb of Science
  114. ↵
    Urnov, F. D. and Wolffe, A. P. (2001). Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 20,2991 -3006.
    OpenUrlCrossRefPubMedWeb of Science
  115. ↵
    van Holde, K. E. (1988). Chromatin. New York: Springer Verlag.
  116. ↵
    van Leeuwen, F., Gafken, P. R. and Gottschling, D. E. (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109,745 -756.
    OpenUrlCrossRefPubMedWeb of Science
  117. ↵
    Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S. and Trouche, D. (2001). Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell Biol. 21,6484 -6494.
    OpenUrlAbstract/FREE Full Text
  118. ↵
    Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P. et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419,624 -629.
    OpenUrlCrossRefPubMedWeb of Science
  119. ↵
    Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I. and Martienssen, R. A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297,1833 -1837.
    OpenUrlAbstract/FREE Full Text
  120. ↵
    Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Borchers, C., Tempst, P. and Zhang, Y. (2001a). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8,1207 -1217.
    OpenUrlCrossRefPubMedWeb of Science
  121. ↵
    Wang, Y., Zhang, W., Jin, Y., Johansen, J. and Johansen, K. M. (2001b). The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105,433 -443.
    OpenUrlCrossRefPubMedWeb of Science
  122. ↵
    Wang, J., Mager, J., Chen, Y., Schneider, E., Cross, J. C., Nagy, A. and Magnuson, T. (2001c). Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat. Genet. 28,371 -375.
    OpenUrlCrossRefPubMedWeb of Science
  123. ↵
    Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., Briggs, S. D., Allis, C. D., Wong, J., Tempst, P. et al. (2001d). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293,853 -857.
    OpenUrlAbstract/FREE Full Text
  124. ↵
    Waterborg, J. H. (1993). Dynamic methylation of alfalfa histone H3. J. Biol. Chem. 268,4918 -4921.
    OpenUrlAbstract/FREE Full Text
  125. ↵
    Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. and Allis, C. D. (1999). Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99-109.
    OpenUrlCrossRefPubMedWeb of Science
  126. ↵
    Wilson, J. R., Jing, C., Walker, P. A., Martin, S. R., Howell, S. A., Blackburn, G. M., Gamblin, S. J. and Xiao, B. (2002). Crystal structure and functional the histone methyltransferase SET7/9. Cell 111,105 -115.
    OpenUrlCrossRefPubMedWeb of Science
  127. ↵
    Wolffe, A. P. (1998). Chromatin: Structure and Function. San Diego: Academic Press.
  128. ↵
    Xiao, B., Jing, C., Wilson, J. R., Walker, P. A., Vasisht, N., Kelly, G., Howell, S., Taylor, I. A., Blackburn, G. M. and Gamblin, S. J. (2003). Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421,652 -656.
    OpenUrlCrossRefPubMedWeb of Science
  129. ↵
    Xin, Z., Allis, C. D. and Wagstaff, J. (2001). Parent-specific complementary patterns of histone H3 lysine 9 and H3 lysine 4 methylation at the Prader-Willi syndrome imprinting center. Am. J. Hum. Genet. 69,1389 -1394.
    OpenUrlCrossRefPubMedWeb of Science
  130. ↵
    Xin, Z., Tachibana, M., Guggiari, M., Heard, E., Shinkai, Y. and Wagstaff, J. (2003). Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J. Biol. Chem. Feb 13 (epub ahead of print).
  131. ↵
    Yang, L., Xia, L., Wu, D. Y., Wang, H., Chansky, H. A., Schubach, W. H., Hickstein, D. D. and Zhang, Y. (2002). Molecular cloning of ESET, a analysis novel of histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21,148 -152.
    OpenUrlCrossRefPubMedWeb of Science
  132. ↵
    Zegerman, P., Canas, B., Pappin, D. and Kouzarides, T. (2002). Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J. Biol. Chem. 277,11621 -11624.
    OpenUrlAbstract/FREE Full Text
  133. ↵
    Zhang, Y. and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15,2343 -2360.
    OpenUrlFREE Full Text
  134. ↵
    Zhang, X., Tamaru, H., Khan, S. I., Horton, J. R., Keefe, L. J., Selker, E. U. and Cheng, X. (2002). Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111,117 -127.
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
An epigenetic road map for histone lysine methylation
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Cell Science at a Glance
An epigenetic road map for histone lysine methylation
Monika Lachner, Roderick J. O'Sullivan, Thomas Jenuwein
Journal of Cell Science 2003 116: 2117-2124; doi: 10.1242/jcs.00493
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Cell Science at a Glance
An epigenetic road map for histone lysine methylation
Monika Lachner, Roderick J. O'Sullivan, Thomas Jenuwein
Journal of Cell Science 2003 116: 2117-2124; doi: 10.1242/jcs.00493

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • Introduction
    • The complexity of histone lysine methylation
    • Transcriptional regulation – going around with H3-K4 and H3-K9
    • Polycomb and trithorax – keeping on track with H3-K27 and H3-K4
    • X-inactivation – choosing an exit with H3-K9 and H3-K27
    • Constitutive heterochromatin – a one-way street to H3-K9 tri-methylation?
    • Outlook
    • Acknowledgments
    • Footnotes
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Cargo transport through the nuclear pore complex at a glance
  • Translation initiation in cancer at a glance
  • Tumour-directed microenvironment remodelling at a glance
Show more CELL SCIENCE AT A GLANCE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Introducing FocalPlane’s new Community Manager, Esperanza Agullo-Pascual

We are pleased to welcome Esperanza to the Journal of Cell Science team. The new Community Manager for FocalPlane, Esperanza is joining us from the Microscopy Core at Mount Sinai School of Medicine. Find out more about Esperanza in her introductory post over on FocalPlane.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

"Alongside pre-printing for early documentation of work, such mechanisms are particularly helpful for early-career researchers like me.”

Dr Chris MacDonald (University of York) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Cell scientist to watch: Romain Levayer

In an interview, Romain Levayer talks about starting his own lab, his love for preprints and his experience of balancing parenting with his research goals.


Live lactating mammary tissue

In a stunning video, Stewart et al. demonstrate warping of the alveolar unit due to basal cell-generated force as part of their recent work investigating roles for mechanically activated ion channels in lactation and involution.

Visit our YouTube channel to watch more videos from JCS, our sister journals and the Company.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992