Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
CELL SCIENCE AT A GLANCE
The LC3 interactome at a glance
Philipp Wild, David G. McEwan, Ivan Dikic
Journal of Cell Science 2014 127: 3-9; doi: 10.1242/jcs.140426
Philipp Wild
1Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wild@biochem2.de
David G. McEwan
1Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ivan Dikic
1Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
2Molecular Signaling, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF
Loading

ABSTRACT

Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways – the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or γ-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy.

Introduction

Autophagy is an evolutionary conserved catabolic pathway that targets large protein complexes and organelles for degradation. Central to this process is the formation of double-membraned vesicles, autophagosomes, which sequester cargo and deliver it to the lysosome (Mizushima et al., 2008; Nakatogawa et al., 2009; Xie and Klionsky, 2007). This degraded material is subsequently recycled into the cytosol across the lysosomal membrane. As such, autophagy not only plays a vital role in achieving cellular protein homeostasis but also serves as a quality control system upon intracellular and extracellular stress conditions.

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Although the initial discovery of autophagy dates back to the 1960s, its physiological importance has long been neglected, mainly owing to the lack of knowledge regarding its underlying molecular mechanisms and the view that cytosolic content is solely turned over in a random fashion (De Duve and Wattiaux, 1966). In the early 1990s, however, genetic screens using yeast mutants defective in autophagy led to the identification, to date, of 38 autophagy-related (Atg) genes, many of which are functionally conserved in higher eukaryotes (Nakatogawa et al., 2009; Tsukada and Ohsumi, 1993). Among these Atg genes, a subset of 17 genes constitutes the core autophagy machinery required for autophagosome formation and maturation. One of these genes encodes Atg8, which is characterized by a C-terminal ubiquitin-like domain that is preceded by a short N-terminal extension. The covalent attachment of Atg8 to phosphatidylethanolamine (PtdEth) at the autophagosomal membrane places it at a crucial juncture during autophagosome formation and cargo recruitment (Shpilka et al., 2012). Interestingly, the sole yeast Atg8-encoding gene has six human homologs comprising the microtubule-associated protein-1 light chain 3 (MAP1LC3) family (MAP1LC3A, MAP1LC3B, MAP1LC3C; short names LC3A, LC3B, LC3C, respectively, and collectively LC3) and the γ-aminobutyric acid (GABA)-receptor-associated proteins (GABARAP, GABARAPL1, GABARAPL2). The biological relevance of the expansion of Atg8 proteins in higher eukaryotes is largely unknown. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the currently established LC3 interactome based on the annotated interactions listed in the BioGRID, Mint and STRING databases. In addition, we also conducted a primary literature search on PubMed to account for any interaction partners that had been omitted. A comprehensive list of all reported Atg8 interactors can be found in the supplementary material Table S1.

The six faces of the Atg8 family

The Atg8 protein family shares a common ubiquitin-like fold that is preceded by two N-terminal a-helices, which vary among the LC3 and GABARAP subfamilies, with this diversification of ubiquitin-like modifiers (Ubls) only found in metazoan animals and plants (Kabeya et al., 2000; Sagiv et al., 2000; Wang et al., 1999; Xin et al., 2001). These proteins are expressed ubiquitously in all tissues and display only slight variations between each family member (Kabeya et al., 2000; Sagiv et al., 2000; Wang et al., 1999; Xin et al., 2001). For example, the less abundant LC3C has pronounced expression in the lung, whereas GABARAPL1 and GABARAPL2 are predominant in the central nervous system (Xin et al., 2001). LC3B, the most extensively studied Atg8 protein to date, was initially reported to co-purify with microtubule-associated protein 1A and 1B and was proposed to influence their binding to microtubules (Kuznetsov and Gelfand, 1987; Mann and Hammarback, 1994). The GABARAP subfamily was first implicated in membrane trafficking processes. For instance, GABARAP and GABARAPL1 are involved in the translocation of transmembrane receptors from the Golgi complex to the plasma membrane (Chen et al., 2006; Leil et al., 2004), whereas GABARAPL2 participates in ER-to-Golgi as well as in intra-Golgi transport (Legesse-Miller et al., 1998). Supporting this notion is the reported interaction of the entire GABARAP subfamily with the SNARE fusion machinery-associated AAA ATPase N-ethylmaleimide-sensitive fusion protein (NSF), although their precise mode of action in intracellular protein trafficking remains to be elucidated (Chen et al., 2006; Kittler et al., 2001; Sagiv et al., 2000).

The lack of Atg8 paralogs in yeast leads to functionally defective autophagy when Atg8 is deleted, highlighting its crucial role during autophagy (Nakatogawa et al., 2009; Tsukada and Ohsumi, 1993). Since then, it has been shown that the Atg8 family members play a vital role during autophagosome biogenesis because these proteins are directly conjugated to lipids by the ubiquitin-like conjugation machinery (see Box 1 and poster).

However, the question that intrigues most researchers is why numerous LC3 and GABARAP proteins participate in autophagy in an apparently redundant manner. Weidberg et al. addressed the potentially distinct roles of LC3B and GABARAPL2 and suggested that LC3s act at an early stage of autophagy, during autophagosome elongation, whereas, further downstream, GABARAPs mediate autophagosome maturation, possibly involving the dissociation of the ATG5–ATG12/ATG16L1 complex (Weidberg et al., 2010). This study, however, did not address the contribution of the other LC3 and GABARAP subfamily members individually (i.e. LC3A, LC3C, GABARAP and GABARAPL1). During autophagosome biogenesis, LC3–PtdEth has been proposed to control the size of autophagosomes through its membrane tethering and hemifusion activities (Weidberg et al., 2011). Moreover, LC3 proteins play a key role in the selective recruitment of autophagic cargoes into autophagosomes, and serve as docking sites for adaptor proteins. Notably, both the core of the ubiquitin fold and N-terminal residues in the extension are indispensable for LC3-mediated cargo recognition.

Characteristics of the LC3-interacting region

Many of the experimentally verified LC3-binding proteins contain a short hydrophobic LC3-interacting region (LIR), which in yeast is more commonly referred to as the Atg8-interacting motif (AIM) (Pankiv et al., 2007). The LIR sequence was first identified in the autophagic receptor p62/SQSTM1 (see below) and in yeast Atg19, and since then been established based on multiple LIR-containing interaction partners. The LIR motif is a WxxL sequence, N-terminally preceded by negatively charged residues (for examples, see poster) in which the aromatic residue appears to be the most crucial determinant (Alemu et al., 2012). The aromatic and the aliphatic amino acid in the last position are accommodated within two hydrophobic pockets (W and L pockets) of the LIR-docking site (LDS) on the Atg8 family member (Ichimura et al., 2008; Noda et al., 2008). A tryptophan residue is energetically favored over tyrosine or phenylalanine residue, whereas the lower affinity tyrosine or phenylalanine residue can be compensated for by the presence of acidic residues and/or or serine/threonine phosphorylation sites preceding the hydrophobic core motif. These have been shown to engage in electrostatic interaction with basic residues in the N-terminal extension and the Ubl domain of LC3 (R10, R11, K49 and K50) (Pankiv et al., 2007; Rogov et al., 2013; Shvets et al., 2008). It is worth noting that phospho-regulation of the LIR–LC3 interaction is reminiscent of that between small ubiquitin-related modifier (SUMO) and the SUMO-interacting motif (SIM) (⇓Chang et al., 2011a; Hecker et al., 2006; Stehmeier and Muller, 2009). One atypical LIR motif regulates the interaction of the autophagy receptor NDP52 (also known as CALCOCO2) with LC3C. Consisting solely of the three aliphatic amino acids, LVV (termed CLIR), CLIR lacks the aromatic residue that typical LIRs contain. Although the LDS of LC3C enables its interaction with common LIR sequences, the CLIR appears to have evolved as an LC3C-exclusive binding motif, as rotation of the CLIR β-strand with respect to the canonical orientation creates additional hydrogen bonds with the LC3C surface (von Muhlinen et al., 2012). Finally, it should be pointed out that an interaction with Atg8 family members does not necessarily require a LIR sequence. Characterization of the Atg8 network, established by Behrends et al. by using LDS mutants, revealed that a substantial fraction of LC3-interacting proteins bind to LC3B and GABARAP independently of the LDS (Behrends et al., 2010).

Members of the core autophagy machinery that contain a LIR motif

The initial events of autophagosome formation are regulated by the mammalian serine/threonine UNC-51-like kinase (ULK) complex, which is functionally equivalent to the yeast Atg1 kinase complex. Recently, it has been shown that both ULK1 (as well as ULK2) and Atg1 kinase harbor canonical LIR motifs, which facilitate their association with autophagosomes (Alemu et al., 2012; Kraft et al., 2012; Nakatogawa et al., 2012). In the case of Atg1, this also results in its LIR-dependent degradation in the vacuole. Interestingly, Atg8-binding deficient variants of Atg1 are not impaired in the induction of autophagosome formation, yet overall autophagy is decreased, suggesting a role for Atg1 in later stages of autophagy (Nakatogawa et al., 2012). In addition, the ULK1 complex components Atg13 (yeast) and RB1CC1/FIP200 (mammals) contain functional LIR motifs that ensure the ULK complex is firmly tethered to the nascent autophagosome. Detailed analyses revealed that ULK complex members preferentially interact with the GABARAP subfamily members rather than the LC3 proteins, although the functional relevance of this remains elusive (Alemu et al., 2012).

The E2-like enzyme Atg3 (known by this name in both yeast and mammals) is another LIR-containing core autophagy component (Behrends et al., 2010; Yamaguchi et al., 2010). Interestingly, the functionally validated interaction of yeast proteins revealed a highly conserved LIR motif in Atg3 that is absent in the mammalian counterpart. Consistently though, this LIR sequence appears to be essential for the yeast-specific cytoplasm-to-vacuole (Cvt) pathway, but dispensable for starvation-induced autophagy (Yamaguchi et al., 2010). Remarkably, the Cvt pathway serves, as opposed to all other types of autophagy, a biosynthetic role by selectively delivering precursor enzymes to the vacuole.

Interactions of the Atg8 family members with all other components of the Atg8 lipidation system (ATG4, ATG5, ATG7, ATG16L1) have been reported (Behrends et al., 2010); however, the interaction of LC3 with the E1-like Atg7 and the cysteine protease Atg4 has been well characterized. The latter serves two roles during autophagosome biogenesis: (1) it primes Atg8 for conjugation to PtdEth by exposing its C-terminal glycine residue and (2) it retrieves PtdEth-conjugated Atg8–LC3B by cleaving off the PtdEth moiety. Crystal structures of the Atg4–LC3B complex in comparison to free Atg4 revealed that the LC3-bound enzyme undergoes a conformational change, which helps LC3B to reach out into the catalytic center of Atg4 (Satoo et al., 2009). Although experimental evidence is currently lacking, it is conceivable that this LIR motif-dependent interaction may promote the recruitment of Atg4, as well as its activity to removing the lipid moiety from Atg8.

Autophagy receptors

Autophagy had long been thought to be a bulk process without any apparent substrate selectivity. However, the identification of the first mammalian selective autophagy receptor p62/SQSTM1 sparked a deluge of new interest in selective autophagy (Bjørkøy et al., 2005; Komatsu et al., 2007; Pankiv et al., 2007). Selective autophagy refers to the specific removal of proteins, protein aggregates (aggrephagy), ribosomes, organelles (e.g. mitophagy, the selective autophagy of mitochondria, and pexophagy, the selective autophagy of peroxisomes) and bacteria (xenophagy), by the cell (Kirkin et al., 2009a; Komatsu et al., 2007; Kraft et al., 2010; Pankiv et al., 2007). Autophagy receptors are proposed to have a major role in selective autophagy by tethering cargo to the site of engulfing autophagosomes through their direct interaction with Atg8 homologs. Since the discovery of p62/SQSTM1, additional autophagy receptors have been characterized in both mammals and yeast (i.e. BNIP3, BNIP3L, FUNDC1, NBR1, NDP52, optineurin). A feature they all have in common is their ability to interact simultaneously with both autophagosomes through an interaction of their LIR motif with LC3, and the cargo substrate, which is often ubiquitylated. Indeed, several of the known receptors possess a ubiquitin-binding domain (UBD) that can sense different ubiquitin chain linkages and confers selectivity to the cargo that is destined for degradation, such as UBA domain in p62/SQSTM1 and NBR1, the ubiquitin-binding zinc finger in NDP52 and the ‘ubiquitin binding in ABIN and NEMO’ (UBAN) domain in optineurin (Kirkin et al., 2009b; Thurston et al., 2009; Wild et al., 2011). Additional domains might cooperatively target autophagy receptors to their respective cargoes. For instance, it has been demonstrated that the combination of both the non-specific membrane-binding J domain and the UBA domain of NBR1 facilitates its specific recruitment to and subsequent clustering of peroxisomes (Deosaran et al., 2013). Furthermore, the translocation of NDP52 to vacuole-escaped cytosolic Salmonella is initially triggered by its binding to galectin-8, which senses β-galactoside-containing glycans that are naturally absent in the cell interior (Thurston et al., 2012). Subsequently, ubiquitylation of the bacterial surface provides a key signal for the recruitment of three xenophagy receptors NDP52, p62/SQSTM1 and optineurin (Thurston et al., 2009; Wild et al., 2011; Zheng et al., 2009). In contrast, mitophagy receptors (Atg32 in yeast; BNIP3, BNIP3L and FUNDC1 in mammals) are outer mitochondrial membrane proteins that are already placed and primed for autophagic clearance of mitochondria (Hanna et al., 2012; Kanki et al., 2009; Liu et al., 2012; Novak et al., 2010; Okamoto et al., 2009). However, during Parkin-mediated mitophagy, outer mitochondrial surface proteins, such as VDAC1 or mitofusin, become ubiquitylated and BNIP3 has been shown to affect the translocation of Parkin to stressed mitochondria.

The specificity of the LIR motif in autophagy receptors towards certain LC3 or GABARAP family members still remains an open issue. For example, the LIR sequence in NDP52 is optimized for binding to LC3C, whereas BNIP3L has been shown to interact with GABARAPL1 and only weakly with LC3B (von Muhlinen et al., 2012; Novak et al., 2010). Moreover, LC3 conjugation could be the factor that determines specificity, as it has been reported that p62 interacts with both GABARAPL2 and LC3B in their unlipidated form, but only the interaction with LC3B remains intact once attached to autophagosomes (Shvets et al., 2011). By comparing the binding of 28 LC3 and GABARAP interaction partners to either free or conjugated LC3 and GABARAP proteins, Behrends et al. found that 15 show either no difference or an enhanced association with the lipid-conjugated Atg8 proteins, whereas 13 interaction partners, including Atg3 and Atg7, display decreased affinity to the lipid-conjugated Atg8 proteins (Behrends et al., 2010). To clearly elucidate the specificity towards the different LC3 and GABARAP family members will require a concerted effort to determine how these family members are utilized (for instance, depending upon the stimulus) and the underlying molecular mechanisms.

LC3-binding proteins involved in vesicle trafficking and autophagosome maturation

The processes of autophagy and endosome maturation possess striking resemblances and, as such, also share multiple interaction partners that facilitate a crosstalk between both pathways. At the heart of endocytic pathways lie the small Rab GTPases that enable effector protein interaction, trafficking and fusion within the endocytic pathway. Therefore, some of these GTPases can also influence the autophagy pathway. For example, degradation of autophagy substrates is inhibited when the dominant-negative (constitutively GDP-bound) form of the late endosome/lysosome small GTPase Rab7 is overexpressed (Gutierrez et al., 2004). The Rab7-interacting protein FYCO1 (FYVE and coiled-coil domain containing protein 1) localizes to late endosomes and autophagosomes and interacts with LC3 and phosphatidylinositol 3-phosphate (PtdIns3P). Its interaction with LC3 is mediated by a W-type LIR, which is located between the FYVE and GOLD domains, and results in exclusive binding to PtdIns3P and coupling to kinesin motor proteins (Pankiv et al., 2010).

Another small GTPase that is involved in autophagy is the Golgi-resident Rab33B that interacts with ATG16L1 and is involved in recruitment of the ATG12–ATG5/ATG16 complex to pre-autophagosomal structures (Itoh et al., 2008). Small GTPases are activated through a cycling between their GDP- (‘off’) and GTP-bound (‘on’) state. They are switched off through the activation of their intrinsic GTPase activity, whereby GTP is converted into GDP, by the action of GTPase-activating proteins (GAPs). One family of GAPs is the TBC (Tre2, Bub2, Cdc16) family, which consists of ∼36 members, of which 14 can interact with LC3 and/or GABARAP proteins. TBC1D25, through its GAP activity towards Rab33B, can regulate the maturation of autophagosomes through a direct interaction with Atg8 homologs and its GAP activity towards Rab33B (Itoh et al., 2011). TBC1D5 is involved in retrograde trafficking and contains two LIR motifs, one at the N-terminus and the other at the C-terminus and both are required for efficient binding to, and co-localization with, mammalian Atg8 proteins (Popovic et al., 2012). Interestingly, its N-terminal LIR can also interact with VPS29, a component of the retromer complex, and can be out-competed by increasing concentrations of LC3, implicating TBC1D5 as a molecular switch between endosomal trafficking and starvation-induced autophagy (Popovic et al., 2012).

Post-translational modifications in the regulation of LC3 interactions

Structural studies of the LIR motif of p62/SQSTM1 in complex with LC3 have revealed that the acidic amino acids N-terminal of the hydrophobic core motif aid the LC3–LIR interaction. The LIR consensus sequence supports this notion, as acidic amino acids clearly predominate the upstream flanking region of the majority of known LIR motifs (Birgisdottir et al., 2013; Noda et al., 2008). Additionally, serine or threonine residues can be found directly preceding the critical aromatic amino acid in ∼25% of identified LIR sequences (Birgisdottir et al., 2013). These residues are prime candidates for post-translational modification (PTM) regulated activation (or inactivation) of autophagy receptors that can proceed rapidly and in a compartmentalized manner (McEwan and Dikic, 2011). Indeed, we have shown that phosphorylation of optineurin at Ser177 (the LIR is at 178–181) enhances its interaction with LC3B (Wild et al., 2011), which was confirmed by nuclear magnetic resonance (NMR) and crystallography studies that showed that the negatively charged phosphate group makes additional contacts with Lys51 and Arg11 in the N-terminal extension of LC3B (Rogov et al., 2013). Similarly, the yeast mitophagy and pexophagy receptors, Atg32 and Atg36 respectively, are regulated by phosphorylation of serine/threonine residues adjacent to their LIR motifs (Farré et al., 2013). In addition, the phosphorylation of both serine residues (Ser17 and Ser24) that flank the LIR motif of Bnip3, enhances its binding to Atg8, resulting in mitochondrial clearance. Conversely, in its unmodified state Bnip3 induces apoptosis (Zhu et al., 2013).

Importantly, phosphorylation of the LIR motif can also abrogate the interaction with LC3-interacting proteins. A subset of known LIR motifs contains a tyrosine residue in place of tryptophan, and phosphorylation at this site could potentially abrogate the interaction with Atg8 family members. Indeed, phosphorylation of the FUNDC1 LIR motif (YEVL) keeps it in an inactive state, whereas its dephosphorylation, which occurs under hypoxia, allows it to interact with Atg8, thus enabling the removal of stressed or damaged mitochondria by mitophagy (Liu et al., 2012).

Of note, phosphorylation sites in two members of the autophagy Ubl conjugation system, namely LC3A and LC3B, have been identified within their N-termini. The physiological role of these phosphorylation events needs further investigation but it appears to negatively affect LC3 function by inhibiting LC3 recruitment into autophagosomes (Cherra et al., 2010).

Interestingly, not only the LIR–LC3 interaction but also the interaction of autophagy receptors with their substrate can be regulated by phosphorylation. For example, phosphorylation of Ser403 within the UBA domain of p62 increases its affinity for ubiquitylated cargo, thereby promoting the degradation of autophagic substrates (Matsumoto et al., 2011). Taking into account the above-discussed SUMO–SIM and LC3–LIR interactions, it is therefore conceivable that phosphorylation of Ubl-binding motifs as well as UBDs constitute a general mechanism to control binding to proteins that harbor a ubiquitin fold and regulate their trafficking, subcellular localization and/or degradation.

Conclusions and perspectives

The majority of the assembled LC3 interactome stems from high-throughput interaction studies and in particular the mammalian LC3 and GABARAP network that has been conducted by the Harper laboratory (Behrends et al., 2010). One should bear in mind that many of these reported interactions have not yet been substantiated biochemically and/or functionally. Although the very first studies of the LC3 proteins did not link this family to autophagy, the current LC3 interactome bears a strong bias towards this pathway. It is therefore important to not neglect autophagy-unrelated LC3 interacting partners and their functions, which are currently investigated less because of the overshadowing interest in autophagy. Having said this, the presented LC3 network is far from complete; in particular, fully elucidating PTM-driven interactions will require a substantial effort to determine the LC3-interaction network in time and space, and under various stress conditions (e.g. starvation, hypoxia, DNA damage, mitochondrial stress). There is also a clear lack of knowledge with regard to the diversification of the Atg8 family in higher eukaryotes, which most likely reflects both redundancy and functional specialization. Thus, future studies should be aimed at deciphering the role of the individual LC3/GABARAP proteins in autophagy.

Box 1. The lipid-conjugation machinery

An indispensable step for Atg8 and the mammalian orthologs to exert their function in autophagy is their covalent conjugation to the membrane lipid phosphatidylethanolamine (PtdEth). Similar to the ubiquitin ligases, Atg8 family members are initially processed by the cysteine protease Atg4 to expose a C-terminal glycine residue. Subsequently, attachment to PtdEth is mediated through the concerted action of the E1 enzyme Atg7 and the LC3- or GABARAP-specific E2-conjugating enzyme Atg3. The final step (the formation of the covalent bond between the carboxyl group of the glycine residue and the amino group of PtdEth) requires the Atg5–Atg12/Atg16 complex that acts as a scaffold for LC3 and GABARAPs – similar to the process for RING type E3 ubiquitin ligases – thus promoting their lipidation (see poster). Furthermore, as ubiquitylation, LC3 lipidation is reversible because the priming enzyme Atg4 also functions in the de-conjugation of LC3 from PtdEth. PtdEth-conjugated LC3 proteins (also known as LC3-II) localize to both sites of the isolation membrane and, importantly, remain associated with autophagosomes even after fusion with the lysosome, where they are degraded together with the captured material. This unique behavior and LC3–PtdEth conjugation are commonly exploited to monitor autophagy flux and autophagy induction or inhibition, respectively.

Footnotes

  • Competing interests

    The authors declare no competing interests.

  • Cell science at a glance

    A high-resolution version of the poster is available for downloading in the online version of this article at jcs.biologists.org. Individual poster panels are available as JPEG files at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.140426/-/DC2

  • Funding

    This work was supported by grants from Deutsche Forschungsgemeinschaft; the Cluster of Excellence ‘Macromolecular Complexes’ of the Goethe University Frankfurt; LOEWE Centrum for Gene and Cell therapy Frankfurt (to D.G.M and I.D.); and an European Research Council (ERC) grant agreement to I.D.

  • Supplementary material available online at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.140426/-/DC1

  • © 2014. Published by The Company of Biologists Ltd

References

    1. Aguilar, P. S.,
    2. Fröhlich, F.,
    3. Rehman, M.,
    4. Shales, M.,
    5. Ulitsky, I.,
    6. Olivera-Couto, A.,
    7. Braberg, H.,
    8. Shamir, R.,
    9. Walter, P. and
    10. Mann, M.
    et al.(2010). A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat. Struct. Mol. Biol. 17, 901–908. doi:10.1038/nsmb.1829
    OpenUrlCrossRefPubMedWeb of Science
    1. Albers, M.,
    2. Kranz, H.,
    3. Kober, I.,
    4. Kaiser, C.,
    5. Klink, M.,
    6. Suckow, J.,
    7. Kern, R. and
    8. Koegl, M.
    (2005). Automated yeast two-hybrid screening for nuclear receptor-interacting proteins. MCP 4, 205–213. doi:10.1074/mcp.M400169-MCP200
    OpenUrlAbstract/FREE Full Text
  1. ↵
    1. Alemu, E. A.,
    2. Lamark, T.,
    3. Torgersen, K. M.,
    4. Birgisdottir, A. B.,
    5. Larsen, K. B.,
    6. Jain, A.,
    7. Olsvik, H.,
    8. Øvervatn, A.,
    9. Kirkin, V. and
    10. Johansen, T.
    (2012). ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287, 39275–39290. doi:10.1074/jbc.M112.378109
    OpenUrlAbstract/FREE Full Text
    1. Aoki, Y.,
    2. Kanki, T.,
    3. Hirota, Y.,
    4. Kurihara, Y.,
    5. Saigusa, T.,
    6. Uchiumi, T. and
    7. Kang, D.
    (2011). Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206–3217. doi:10.1091/mbc.E11-02-0145
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Behrends, C.,
    2. Sowa, M. E.,
    3. Gygi, S. P. and
    4. Harper, J. W.
    (2010). Network organization of the human autophagy system. Nature 466, 68–76. doi:10.1038/nature09204
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Birgisdottir, A. B.,
    2. Lamark, T. and
    3. Johansen, T.
    (2013). The LIR motif - crucial for selective autophagy. J. Cell Sci. 126, 3237–3247.
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Bjørkøy, G.,
    2. Lamark, T.,
    3. Brech, A.,
    4. Outzen, H.,
    5. Perander, M.,
    6. Overvatn, A.,
    7. Stenmark, H. and
    8. Johansen, T.
    (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614. doi:10.1083/jcb.200507002
    OpenUrlAbstract/FREE Full Text
    1. Brieger, A.,
    2. Adryan, B.,
    3. Wolpert, F.,
    4. Passmann, S.,
    5. Zeuzem, S. and
    6. Trojan, J.
    (2010). Cytoskeletal scaffolding proteins interact with Lynch-Syndrome associated mismatch repair protein MLH1. Proteomics 10, 3343–3355. doi:10.1002/pmic.200900672
    OpenUrlCrossRefPubMed
  5. ↵
    1. Chang, C. C.,
    2. Naik, M. T.,
    3. Huang, Y. S.,
    4. Jeng, J. C.,
    5. Liao, P. H.,
    6. Kuo, H. Y.,
    7. Ho, C. C.,
    8. Hsieh, Y. L.,
    9. Lin, C. H. and
    10. Huang, N. J.
    et al.(2011a). Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol. Cell 42, 62–74. doi:10.1016/j.molcel.2011.02.022
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang, H. Y.,
    2. Lawless, C.,
    3. Addinall, S. G.,
    4. Oexle, S.,
    5. Taschuk, M.,
    6. Wipat, A.,
    7. Wilkinson, D. J. and
    8. Lydall, D.
    (2011b). Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3 (Bethesda) 1, 197–208.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Chen, C.,
    2. Li, J. G.,
    3. Chen, Y.,
    4. Huang, P.,
    5. Wang, Y. and
    6. Liu-Chen, L. Y.
    (2006). GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor. J. Biol. Chem. 281, 7983–7993. doi:10.1074/jbc.M509805200
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Cherra, S. J. 3rd.,
    2. Kulich, S. M.,
    3. Uechi, G.,
    4. Balasubramani, M.,
    5. Mountzouris, J.,
    6. Day, B. W. and
    7. Chu, C. T.
    (2010). Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol. 190, 533–539. doi:10.1083/jcb.201002108
    OpenUrlAbstract/FREE Full Text
    1. Clausen, T. H.,
    2. Lamark, T.,
    3. Isakson, P.,
    4. Finley, K.,
    5. Larsen, K. B.,
    6. Brech, A.,
    7. Øvervatn, A.,
    8. Stenmark, H.,
    9. Bjørkøy, G. and
    10. Simonsen, A.
    et al.(2010). p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 6, 330–344. doi:10.4161/auto.6.3.11226
    OpenUrlCrossRefPubMedWeb of Science
    1. Costanzo, M.,
    2. Baryshnikova, A.,
    3. Bellay, J.,
    4. Kim, Y.,
    5. Spear, E. D.,
    6. Sevier, C. S.,
    7. Ding, H.,
    8. Koh, J. L.,
    9. Toufighi, K. and
    10. Mostafavi, S.
    et al.(2010). The genetic landscape of a cell. Science 327, 425–431. doi:10.1126/science.1180823
    OpenUrlAbstract/FREE Full Text
    1. D'Agostino, C.,
    2. Nogalska, A.,
    3. Cacciottolo, M.,
    4. Engel, W. K. and
    5. Askanas, V.
    (2011). Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol. 122, 627–636. doi:10.1007/s00401-011-0874-3
    OpenUrlCrossRefPubMed
  8. ↵
    1. De Duve, C. and
    2. Wattiaux, R.
    (1966). Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492. doi:10.1146/annurev.ph.28.030166.002251
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Deosaran, E.,
    2. Larsen, K. B.,
    3. Hua, R.,
    4. Sargent, G.,
    5. Wang, Y.,
    6. Kim, S.,
    7. Lamark, T.,
    8. Jauregui, M.,
    9. Law, K. and
    10. Lippincott-Schwartz, J.
    et al.(2013). NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939–952. doi:10.1242/jcs.114819
    OpenUrlAbstract/FREE Full Text
    1. Deribe, Y. L.,
    2. Wild, P.,
    3. Chandrashaker, A.,
    4. Curak, J.,
    5. Schmidt, M. H.,
    6. Kalaidzidis, Y.,
    7. Milutinovic, N.,
    8. Kratchmarova, I.,
    9. Buerkle, L. and
    10. Fetchko, M. J.
    et al.(2009). Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal. 2, ra84. doi:10.1126/scisignal.2000576
    OpenUrlAbstract/FREE Full Text
    1. Ewing, R. M.,
    2. Chu, P.,
    3. Elisma, F.,
    4. Li, H.,
    5. Taylor, P.,
    6. Climie, S.,
    7. McBroom-Cerajewski, L.,
    8. Robinson, M. D.,
    9. O'Connor, L. and
    10. Li, M.
    et al.(2007). Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89. doi:10.1038/msb4100134
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Farré, J. C.,
    2. Burkenroad, A.,
    3. Burnett, S. F. and
    4. Subramani, S.
    (2013). Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14, 441–449. doi:10.1038/embor.2013.40
    OpenUrlAbstract/FREE Full Text
    1. Finnigan, G. C.,
    2. Ryan, M. and
    3. Stevens, T. H.
    (2011). A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187, 771–783. doi:10.1534/genetics.110.125567
    OpenUrlAbstract/FREE Full Text
    1. Gao, C.,
    2. Cao, W.,
    3. Bao, L.,
    4. Zuo, W.,
    5. Xie, G.,
    6. Cai, T.,
    7. Fu, W.,
    8. Zhang, J.,
    9. Wu, W. and
    10. Zhang, X.
    et al.(2010). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol. 12, 781–790. doi:10.1038/ncb2082
    OpenUrlCrossRefPubMedWeb of Science
    1. Goehler, H.,
    2. Lalowski, M.,
    3. Stelzl, U.,
    4. Waelter, S.,
    5. Stroedicke, M.,
    6. Worm, U.,
    7. Droege, A.,
    8. Lindenberg, K. S.,
    9. Knoblich, M. and
    10. Haenig, C.
    et al.(2004). A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853–865. doi:10.1016/j.molcel.2004.09.016
    OpenUrlCrossRefPubMedWeb of Science
    1. Green, F.,
    2. O'Hare, T.,
    3. Blackwell, A. and
    4. Enns, C. A.
    (2002). Association of human transferrin receptor with GABARAP. FEBS Lett. 518, 101–106. doi:10.1016/S0014-5793(02)02655-8
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    1. Gutierrez, M. G.,
    2. Munafó, D. B.,
    3. Berón, W. and
    4. Colombo, M. I.
    (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117, 2687–2697. doi:10.1242/jcs.01114
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Hanna, R. A.,
    2. Quinsay, M. N.,
    3. Orogo, A. M.,
    4. Giang, K.,
    5. Rikka, S. and
    6. Gustafsson, A. B.
    (2012). Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094–19104. doi:10.1074/jbc.M111.322933
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Hecker, C. M.,
    2. Rabiller, M.,
    3. Haglund, K.,
    4. Bayer, P. and
    5. Dikic, I.
    (2006). Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127. doi:10.1074/jbc.M512757200
    OpenUrlAbstract/FREE Full Text
    1. Ho, K. H.,
    2. Chang, H. E. and
    3. Huang, W. P.
    (2009). Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function. Autophagy 5, 461–471. doi:10.4161/auto.5.4.7696
    OpenUrlCrossRefPubMed
    1. Hoke, S. M.,
    2. Guzzo, J.,
    3. Andrews, B. and
    4. Brandl, C. J.
    (2008). Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes. BMC Genet. 9, 46. doi:10.1186/1471-2156-9-46
    OpenUrlCrossRefPubMed
    1. Hoppins, S.,
    2. Collins, S. R.,
    3. Cassidy-Stone, A.,
    4. Hummel, E.,
    5. Devay, R. M.,
    6. Lackner, L. L.,
    7. Westermann, B.,
    8. Schuldiner, M.,
    9. Weissman, J. S. and
    10. Nunnari, J.
    (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195, 323–340. doi:10.1083/jcb.201107053
    OpenUrlAbstract/FREE Full Text
    1. Ichimura, Y.,
    2. Kirisako, T.,
    3. Takao, T.,
    4. Satomi, Y.,
    5. Shimonishi, Y.,
    6. Ishihara, N.,
    7. Mizushima, N.,
    8. Tanida, I.,
    9. Kominami, E. and
    10. Ohsumi, M.
    et al.(2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492. doi:10.1038/35044114
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. Ichimura, Y.,
    2. Kumanomidou, T.,
    3. Sou, Y. S.,
    4. Mizushima, T.,
    5. Ezaki, J.,
    6. Ueno, T.,
    7. Kominami, E.,
    8. Yamane, T.,
    9. Tanaka, K. and
    10. Komatsu, M.
    (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283, 22847–22857. doi:10.1074/jbc.M802182200
    OpenUrlAbstract/FREE Full Text
    1. Ito, T.,
    2. Chiba, T.,
    3. Ozawa, R.,
    4. Yoshida, M.,
    5. Hattori, M. and
    6. Sakaki, Y.
    (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574. doi:10.1073/pnas.061034498
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Itoh, T.,
    2. Fujita, N.,
    3. Kanno, E.,
    4. Yamamoto, A.,
    5. Yoshimori, T. and
    6. Fukuda, M.
    (2008). Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell 19, 2916–2925. doi:10.1091/mbc.E07-12-1231
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Itoh, T.,
    2. Kanno, E.,
    3. Uemura, T.,
    4. Waguri, S. and
    5. Fukuda, M.
    (2011). OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol. 192, 839–853. doi:10.1083/jcb.201008107
    OpenUrlAbstract/FREE Full Text
    1. Jonikas, M. C.,
    2. Collins, S. R.,
    3. Denic, V.,
    4. Oh, E.,
    5. Quan, E. M.,
    6. Schmid, V.,
    7. Weibezahn, J.,
    8. Schwappach, B.,
    9. Walter, P. and
    10. Weissman, J. S.
    et al.(2009). Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697. doi:10.1126/science.1167983
    OpenUrlAbstract/FREE Full Text
    1. Jotwani, A.,
    2. Richerson, D. N.,
    3. Motta, I.,
    4. Julca-Zevallos, O. and
    5. Melia, T. J.
    (2012). Approaches to the study of Atg8-mediated membrane dynamics in vitro. Methods Cell Biol. 108, 93–116. doi:10.1016/B978-0-12-386487-1.00005-5
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Kabeya, Y.,
    2. Mizushima, N.,
    3. Ueno, T.,
    4. Yamamoto, A.,
    5. Kirisako, T.,
    6. Noda, T.,
    7. Kominami, E.,
    8. Ohsumi, Y. and
    9. Yoshimori, T.
    (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728. doi:10.1093/emboj/19.21.5720
    OpenUrlAbstract/FREE Full Text
    1. Kaluarachchi Duffy, S.,
    2. Friesen, H.,
    3. Baryshnikova, A.,
    4. Lambert, J. P.,
    5. Chong, Y. T.,
    6. Figeys, D. and
    7. Andrews, B.
    (2012). Exploring the yeast acetylome using functional genomics. Cell 149, 936–948. doi:10.1016/j.cell.2012.02.064
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Kanki, T.,
    2. Wang, K.,
    3. Cao, Y.,
    4. Baba, M. and
    5. Klionsky, D. J.
    (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109. doi:10.1016/j.devcel.2009.06.014
    OpenUrlCrossRefPubMedWeb of Science
    1. Kario, E.,
    2. Amar, N.,
    3. Elazar, Z. and
    4. Navon, A.
    (2011). A new autophagy-related checkpoint in the degradation of an ERAD-M target. J. Biol. Chem. 286, 11479–11491. doi:10.1074/jbc.M110.177618
    OpenUrlAbstract/FREE Full Text
    1. Kim, J.,
    2. Huang, W. P.,
    3. Stromhaug, P. E. and
    4. Klionsky, D. J.
    (2002). Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem. 277, 763–773. doi:10.1074/jbc.M109134200
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Kirkin, V.,
    2. Lamark, T.,
    3. Sou, Y. S.,
    4. Bjørkøy, G.,
    5. Nunn, J. L.,
    6. Bruun, J. A.,
    7. Shvets, E.,
    8. McEwan, D. G.,
    9. Clausen, T. H. and
    10. Wild, P.
    et al.(2009a). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516. doi:10.1016/j.molcel.2009.01.020
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Kirkin, V.,
    2. McEwan, D. G.,
    3. Novak, I. and
    4. Dikic, I.
    (2009b). A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269. doi:10.1016/j.molcel.2009.04.026
    OpenUrlCrossRefPubMedWeb of Science
  21. ↵
    1. Kittler, J. T.,
    2. Rostaing, P.,
    3. Schiavo, G.,
    4. Fritschy, J. M.,
    5. Olsen, R.,
    6. Triller, A. and
    7. Moss, S. J.
    (2001). The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol. Cell. Neurosci. 18, 13–25. doi:10.1006/mcne.2001.1005
    OpenUrlCrossRefPubMedWeb of Science
    1. Knævelsrud, H.,
    2. Søreng, K.,
    3. Raiborg, C.,
    4. Håberg, K.,
    5. Rasmuson, F.,
    6. Brech, A.,
    7. Liestøl, K.,
    8. Rusten, T. E.,
    9. Stenmark, H. and
    10. Neufeld, T. P.
    et al.(2013). Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J. Cell Biol. 202, 331–349. doi:10.1083/jcb.201205129
    OpenUrlAbstract/FREE Full Text
    1. Komatsu, M.,
    2. Tanida, I.,
    3. Ueno, T.,
    4. Ohsumi, M.,
    5. Ohsumi, Y. and
    6. Kominami, E.
    (2001). The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E2 complex formation. J. Biol. Chem. 276, 9846–9854. doi:10.1074/jbc.M007737200
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Komatsu, M.,
    2. Waguri, S.,
    3. Koike, M.,
    4. Sou, Y. S.,
    5. Ueno, T.,
    6. Hara, T.,
    7. Mizushima, N.,
    8. Iwata, J.,
    9. Ezaki, J. and
    10. Murata, S.
    et al.(2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163. doi:10.1016/j.cell.2007.10.035
    OpenUrlCrossRefPubMedWeb of Science
    1. Kondo-Okamoto, N.,
    2. Noda, N. N.,
    3. Suzuki, S. W.,
    4. Nakatogawa, H.,
    5. Takahashi, I.,
    6. Matsunami, M.,
    7. Hashimoto, A.,
    8. Inagaki, F.,
    9. Ohsumi, Y. and
    10. Okamoto, K.
    (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287, 10631–10638. doi:10.1074/jbc.M111.299917
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Kraft, C.,
    2. Kijanska, M.,
    3. Kalie, E.,
    4. Siergiejuk, E.,
    5. Lee, S. S.,
    6. Semplicio, G.,
    7. Stoffel, I.,
    8. Brezovich, A.,
    9. Verma, M. and
    10. Hansmann, I.
    et al.(2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31, 3691–3703. doi:10.1038/emboj.2012.225
    OpenUrlCrossRefPubMed
  24. ↵
    1. Kraft, C.,
    2. Peter, M. and
    3. Hofmann, K.
    (2010). Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836–841. doi:10.1038/ncb0910-836
    OpenUrlCrossRefPubMedWeb of Science
    1. Krick, R.,
    2. Bremer, S.,
    3. Welter, E.,
    4. Schlotterhose, P.,
    5. Muehe, Y.,
    6. Eskelinen, E. L. and
    7. Thumm, M.
    (2010). Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J. Cell Biol. 190, 965–973. doi:10.1083/jcb.201002075
    OpenUrlAbstract/FREE Full Text
    1. Krogan, N. J.,
    2. Cagney, G.,
    3. Yu, H.,
    4. Zhong, G.,
    5. Guo, X.,
    6. Ignatchenko, A.,
    7. Li, J.,
    8. Pu, S.,
    9. Datta, N. and
    10. Tikuisis, A. P.
    et al.(2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643. doi:10.1038/nature04670
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Kuznetsov, S. A. and
    2. Gelfand, V. I.
    (1987). 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Lett. 212, 145–148. doi:10.1016/0014-5793(87)81574-0
    OpenUrlCrossRefPubMed
    1. Lang, T.,
    2. Schaeffeler, E.,
    3. Bernreuther, D.,
    4. Bredschneider, M.,
    5. Wolf, D. H. and
    6. Thumm, M.
    (1998). Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 17, 3597–3607. doi:10.1093/emboj/17.13.3597
    OpenUrlAbstract
    1. Lee, I. H.,
    2. Cao, L.,
    3. Mostoslavsky, R.,
    4. Lombard, D. B.,
    5. Liu, J.,
    6. Bruns, N. E.,
    7. Tsokos, M.,
    8. Alt, F. W. and
    9. Finkel, T.
    (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374–3379. doi:10.1073/pnas.0712145105
    OpenUrlAbstract/FREE Full Text
    1. Lee, J. S.,
    2. Li, Q.,
    3. Lee, J. Y.,
    4. Lee, S. H.,
    5. Jeong, J. H.,
    6. Lee, H. R.,
    7. Chang, H.,
    8. Zhou, F. C.,
    9. Gao, S. J. and
    10. Liang, C.
    et al.(2009). FLIP-mediated autophagy regulation in cell death control. Nat. Cell Biol. 11, 1355–1362. doi:10.1038/ncb1980
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. Legesse-Miller, A.,
    2. Sagiv, Y.,
    3. Porat, A. and
    4. Elazar, Z.
    (1998). Isolation and characterization of a novel low molecular weight protein involved in intra-Golgi traffic. J. Biol. Chem. 273, 3105–3109. doi:10.1074/jbc.273.5.3105
    OpenUrlAbstract/FREE Full Text
    1. Legesse-Miller, A.,
    2. Sagiv, Y.,
    3. Glozman, R. and
    4. Elazar, Z.
    (2000). Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J. Biol. Chem. 275, 32966–32973. doi:10.1074/jbc.M000917200
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Leil, T. A.,
    2. Chen, Z. W.,
    3. Chang, C. S. and
    4. Olsen, R. W.
    (2004). GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J. Neurosci. 24, 11429–11438. doi:10.1523/JNEUROSCI.3355-04.2004
    OpenUrlAbstract/FREE Full Text
    1. Liu, B.,
    2. Larsson, L.,
    3. Caballero, A.,
    4. Hao, X.,
    5. Oling, D.,
    6. Grantham, J. and
    7. Nyström, T.
    (2010). The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140, 257–267. doi:10.1016/j.cell.2009.12.031
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    1. Liu, L.,
    2. Feng, D.,
    3. Chen, G.,
    4. Chen, M.,
    5. Zheng, Q.,
    6. Song, P.,
    7. Ma, Q.,
    8. Zhu, C.,
    9. Wang, R. and
    10. Qi, W.
    et al.(2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185. doi:10.1038/ncb2422
    OpenUrlCrossRefPubMedWeb of Science
  29. ↵
    1. Mann, S. S. and
    2. Hammarback, J. A.
    (1994). Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J. Biol. Chem. 269, 11492–11497.
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Matsumoto, G.,
    2. Wada, K.,
    3. Okuno, M.,
    4. Kurosawa, M. and
    5. Nukina, N.
    (2011). Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279–289. doi:10.1016/j.molcel.2011.07.039
    OpenUrlCrossRefPubMedWeb of Science
    1. Mauvezin, C.,
    2. Orpinell, M.,
    3. Francis, V. A.,
    4. Mansilla, F.,
    5. Duran, J.,
    6. Ribas, V.,
    7. Palacín, M.,
    8. Boya, P.,
    9. Teleman, A. A. and
    10. Zorzano, A.
    (2010). The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep. 11, 37–44. doi:10.1038/embor.2009.242
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. McEwan, D. G. and
    2. Dikic, I.
    (2011). The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol. 21, 195–201. doi:10.1016/j.tcb.2010.12.006
    OpenUrlCrossRefPubMedWeb of Science
  32. ↵
    1. Mizushima, N.,
    2. Levine, B.,
    3. Cuervo, A. M. and
    4. Klionsky, D. J.
    (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075. doi:10.1038/nature06639
    OpenUrlCrossRefPubMedWeb of Science
    1. Mohrlüder, J.,
    2. Hoffmann, Y.,
    3. Stangler, T.,
    4. Hänel, K. and
    5. Willbold, D.
    (2007a). Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein. Biochemistry 46, 14537–14543. doi:10.1021/bi7018145
    OpenUrlCrossRefPubMedWeb of Science
    1. Mohrlüder, J.,
    2. Stangler, T.,
    3. Hoffmann, Y.,
    4. Wiesehan, K.,
    5. Mataruga, A. and
    6. Willbold, D.
    (2007b). Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library. FEBS J. 274, 5543–5555. doi:10.1111/j.1742-4658.2007.06073.x
    OpenUrlCrossRefPubMed
    1. Motley, A. M.,
    2. Nuttall, J. M. and
    3. Hettema, E. H.
    (2012). Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852–2868. doi:10.1038/emboj.2012.151
    OpenUrlCrossRefPubMed
  33. ↵
    1. Nakatogawa, H.,
    2. Ohbayashi, S.,
    3. Sakoh-Nakatogawa, M.,
    4. Kakuta, S.,
    5. Suzuki, S. W.,
    6. Kirisako, H.,
    7. Kondo-Kakuta, C.,
    8. Noda, N. N.,
    9. Yamamoto, H. and
    10. Ohsumi, Y.
    (2012). The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287, 28503–28507. doi:10.1074/jbc.C112.387514
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Nakatogawa, H.,
    2. Suzuki, K.,
    3. Kamada, Y. and
    4. Ohsumi, Y.
    (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467. doi:10.1038/nrm2708
    OpenUrlCrossRefPubMedWeb of Science
    1. Newman, A. C.,
    2. Scholefield, C. L.,
    3. Kemp, A. J.,
    4. Newman, M.,
    5. McIver, E. G.,
    6. Kamal, A. and
    7. Wilkinson, S.
    (2012). TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE 7, e50672. doi:10.1371/journal.pone.0050672
    OpenUrlCrossRefPubMed
  35. ↵
    1. Noda, N. N.,
    2. Kumeta, H.,
    3. Nakatogawa, H.,
    4. Satoo, K.,
    5. Adachi, W.,
    6. Ishii, J.,
    7. Fujioka, Y.,
    8. Ohsumi, Y. and
    9. Inagaki, F.
    (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211–1218. doi:10.1111/j.1365-2443.2008.01238.x
    OpenUrlCrossRefPubMed
  36. ↵
    1. Novak, I.,
    2. Kirkin, V.,
    3. McEwan, D. G.,
    4. Zhang, J.,
    5. Wild, P.,
    6. Rozenknop, A.,
    7. Rogov, V.,
    8. Löhr, F.,
    9. Popovic, D. and
    10. Occhipinti, A.
    et al.(2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51. doi:10.1038/embor.2009.256
    OpenUrlCrossRefPubMedWeb of Science
    1. Nymann-Andersen, J.,
    2. Wang, H.,
    3. Chen, L.,
    4. Kittler, J. T.,
    5. Moss, S. J. and
    6. Olsen, R. W.
    (2002). Subunit specificity and interaction domain between GABA(A) receptor-associated protein (GABARAP) and GABA(A) receptors. J. Neurochem. 80, 815–823. doi:10.1046/j.0022-3042.2002.00762.x
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Okamoto, K.,
    2. Kondo-Okamoto, N. and
    3. Ohsumi, Y.
    (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97. doi:10.1016/j.devcel.2009.06.013
    OpenUrlCrossRefPubMedWeb of Science
    1. Okazaki, N.,
    2. Yan, J.,
    3. Yuasa, S.,
    4. Ueno, T.,
    5. Kominami, E.,
    6. Masuho, Y.,
    7. Koga, H. and
    8. Muramatsu, M.
    (2000). Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res. Mol. Brain Res. 85, 1–12. doi:10.1016/S0169-328X(00)00218-7
    OpenUrlCrossRefPubMed
    1. Pan, J. A.,
    2. Ullman, E.,
    3. Dou, Z. and
    4. Zong, W. X.
    (2011). Inhibition of protein degradation induces apoptosis through a microtubule-associated protein 1 light chain 3-mediated activation of caspase-8 at intracellular membranes. Mol. Cell. Biol. 31, 3158–3170. doi:10.1128/MCB.05460-11
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Pankiv, S.,
    2. Alemu, E. A.,
    3. Brech, A.,
    4. Bruun, J. A.,
    5. Lamark, T.,
    6. Overvatn, A.,
    7. Bjørkøy, G. and
    8. Johansen, T.
    (2010). FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188, 253–269. doi:10.1083/jcb.200907015
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Pankiv, S.,
    2. Clausen, T. H.,
    3. Lamark, T.,
    4. Brech, A.,
    5. Bruun, J. A.,
    6. Outzen, H.,
    7. Øvervatn, A.,
    8. Bjørkøy, G. and
    9. Johansen, T.
    (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145. doi:10.1074/jbc.M702824200
    OpenUrlAbstract/FREE Full Text
    1. Passantino, R.,
    2. Cascio, C.,
    3. Deidda, I.,
    4. Galizzi, G.,
    5. Russo, D.,
    6. Spedale, G. and
    7. Guarneri, P.
    (2013). Identifying protein partners of CLN8, an ER-resident protein involved in neuronal ceroid lipofuscinosis. Biochim. Biophys. Acta 1833, 529–540. doi:10.1016/j.bbamcr.2012.10.030
    OpenUrlCrossRef
    1. Petherick, K. J.,
    2. Williams, A. C.,
    3. Lane, J. D.,
    4. Ordóñez-Morán, P.,
    5. Huelsken, J.,
    6. Collard, T. J.,
    7. Smartt, H. J.,
    8. Batson, J.,
    9. Malik, K. and
    10. Paraskeva, C.
    et al.(2013). Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 32, 1903–1916. doi:10.1038/emboj.2013.123
    OpenUrlCrossRefPubMed
  40. ↵
    1. Popovic, D.,
    2. Akutsu, M.,
    3. Novak, I.,
    4. Harper, J. W.,
    5. Behrends, C. and
    6. Dikic, I.
    (2012). Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell. Biol. 32, 1733–1744. doi:10.1128/MCB.06717-11
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Rogov, V. V.,
    2. Suzuki, H.,
    3. Fiskin, E.,
    4. Wild, P.,
    5. Kniss, A.,
    6. Rozenknop, A.,
    7. Kato, R.,
    8. Kawasaki, M.,
    9. McEwan, D. G. and
    10. Löhr, F.
    et al.(2013). Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem. J. 454, 459–466. doi:10.1042/BJ20121907
    OpenUrlCrossRefPubMed
    1. Rothenberg, C.,
    2. Srinivasan, D.,
    3. Mah, L.,
    4. Kaushik, S.,
    5. Peterhoff, C. M.,
    6. Ugolino, J.,
    7. Fang, S.,
    8. Cuervo, A. M.,
    9. Nixon, R. A. and
    10. Monteiro, M. J.
    (2010). Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum. Mol. Genet. 19, 3219–3232. doi:10.1093/hmg/ddq231
    OpenUrlAbstract/FREE Full Text
    1. Rual, J. F.,
    2. Venkatesan, K.,
    3. Hao, T.,
    4. Hirozane-Kishikawa, T.,
    5. Dricot, A.,
    6. Li, N.,
    7. Berriz, G. F.,
    8. Gibbons, F. D.,
    9. Dreze, M. and
    10. Ayivi-Guedehoussou, N.
    et al.(2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178. doi:10.1038/nature04209
    OpenUrlCrossRefPubMedWeb of Science
  42. ↵
    1. Sagiv, Y.,
    2. Legesse-Miller, A.,
    3. Porat, A. and
    4. Elazar, Z.
    (2000). GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J. 19, 1494–1504. doi:10.1093/emboj/19.7.1494
    OpenUrlAbstract
    1. Sancho, A.,
    2. Duran, J.,
    3. García-España, A.,
    4. Mauvezin, C.,
    5. Alemu, E. A.,
    6. Lamark, T.,
    7. Macias, M. J.,
    8. DeSalle, R.,
    9. Royo, M. and
    10. Sala, D.
    et al.(2012). DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family encoding dual regulators of autophagy and transcription. PLoS ONE 7, e34034. doi:10.1371/journal.pone.0034034
    OpenUrlCrossRefPubMed
    1. Sandilands, E.,
    2. Serrels, B.,
    3. McEwan, D. G.,
    4. Morton, J. P.,
    5. Macagno, J. P.,
    6. McLeod, K.,
    7. Stevens, C.,
    8. Brunton, V. G.,
    9. Langdon, W. Y. and
    10. Vidal, M.
    et al.(2011). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol. 14, 51–60. doi:10.1038/ncb2386
    OpenUrlCrossRefPubMed
  43. ↵
    1. Satoo, K.,
    2. Noda, N. N.,
    3. Kumeta, H.,
    4. Fujioka, Y.,
    5. Mizushima, N.,
    6. Ohsumi, Y. and
    7. Inagaki, F.
    (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 28, 1341–1350. doi:10.1038/emboj.2009.80
    OpenUrlCrossRefPubMedWeb of Science
    1. Sharifpoor, S.,
    2. van Dyk, D.,
    3. Costanzo, M.,
    4. Baryshnikova, A.,
    5. Friesen, H.,
    6. Douglas, A. C.,
    7. Youn, J. Y.,
    8. VanderSluis, B.,
    9. Myers, C. L. and
    10. Papp, B.
    et al.(2012). Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res. 22, 791–801. doi:10.1101/gr.129213.111
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Shpilka, T.,
    2. Mizushima, N. and
    3. Elazar, Z.
    (2012). Ubiquitin-like proteins and autophagy at a glance. J. Cell Sci. 125, 2343–2348. doi:10.1242/jcs.093757
    OpenUrlFREE Full Text
  45. ↵
    1. Shvets, E.,
    2. Abada, A.,
    3. Weidberg, H. and
    4. Elazar, Z.
    (2011). Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes. Autophagy 7, 683–688. doi:10.4161/auto.7.7.15279
    OpenUrlCrossRefPubMed
  46. ↵
    1. Shvets, E.,
    2. Fass, E.,
    3. Scherz-Shouval, R. and
    4. Elazar, Z.
    (2008). The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 121, 2685–2695. doi:10.1242/jcs.026005
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Stehmeier, P. and
    2. Muller, S.
    (2009). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol. Cell 33, 400–409. doi:10.1016/j.molcel.2009.01.013
    OpenUrlCrossRefPubMedWeb of Science
    1. Stelzl, U.,
    2. Worm, U.,
    3. Lalowski, M.,
    4. Haenig, C.,
    5. Brembeck, F. H.,
    6. Goehler, H.,
    7. Stroedicke, M.,
    8. Zenkner, M.,
    9. Schoenherr, A. and
    10. Koeppen, S.
    et al.(2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968. doi:10.1016/j.cell.2005.08.029
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki, K.,
    2. Kondo, C.,
    3. Morimoto, M. and
    4. Ohsumi, Y.
    (2010). Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J. Biol. Chem. 285, 30019–30025. doi:10.1074/jbc.M110.143511
    OpenUrlAbstract/FREE Full Text
    1. Tanida, I.,
    2. Tanida-Miyake, E.,
    3. Ueno, T. and
    4. Kominami, E.
    (2001). The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem. 276, 1701–1706.
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Thurston, T. L.,
    2. Ryzhakov, G.,
    3. Bloor, S.,
    4. von Muhlinen, N. and
    5. Randow, F.
    (2009). The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215–1221. doi:10.1038/ni.1800
    OpenUrlCrossRefPubMedWeb of Science
  49. ↵
    1. Thurston, T. L.,
    2. Wandel, M. P.,
    3. von Muhlinen, N.,
    4. Foeglein, A. and
    5. Randow, F.
    (2012). Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418. doi:10.1038/nature10744
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    1. Tsukada, M. and
    2. Ohsumi, Y.
    (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174. doi:10.1016/0014-5793(93)80398-E
    OpenUrlCrossRefPubMedWeb of Science
    1. Tumbarello, D. A.,
    2. Waxse, B. J.,
    3. Arden, S. D.,
    4. Bright, N. A.,
    5. Kendrick-Jones, J. and
    6. Buss, F.
    (2012). Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14, 1024–1035. doi:10.1038/ncb2589
    OpenUrlCrossRefPubMedWeb of Science
    1. Uetz, P.,
    2. Giot, L.,
    3. Cagney, G.,
    4. Mansfield, T. A.,
    5. Judson, R. S.,
    6. Knight, J. R.,
    7. Lockshon, D.,
    8. Narayan, V.,
    9. Srinivasan, M. and
    10. Pochart, P.
    et al.(2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627. doi:10.1038/35001009
    OpenUrlCrossRefPubMedWeb of Science
    1. Ulbricht, A.,
    2. Eppler, F. J.,
    3. Tapia, V. E.,
    4. van der Ven, P. F.,
    5. Hampe, N.,
    6. Hersch, N.,
    7. Vakeel, P.,
    8. Stadel, D.,
    9. Haas, A. and
    10. Saftig, P.
    et al.(2013). Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr. Biol. 23, 430–435.
    OpenUrlCrossRefPubMed
    1. Vembar, S. S.,
    2. Jonikas, M. C.,
    3. Hendershot, L. M.,
    4. Weissman, J. S. and
    5. Brodsky, J. L.
    (2010). J domain co-chaperone specificity defines the role of BiP during protein translocation. J. Biol. Chem. 285, 22484–22494. doi:10.1074/jbc.M110.102186
    OpenUrlAbstract/FREE Full Text
    1. Vinayagam, A.,
    2. Stelzl, U.,
    3. Foulle, R.,
    4. Plassmann, S.,
    5. Zenkner, M.,
    6. Timm, J.,
    7. Assmus, H. E.,
    8. Andrade-Navarro, M. A. and
    9. Wanker, E. E.
    (2011). A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal. 4, rs8. doi:10.1126/scisignal.2001699
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. von Muhlinen, N.,
    2. Akutsu, M.,
    3. Ravenhill, B. J.,
    4. Foeglein, A.,
    5. Bloor, S.,
    6. Rutherford, T. J.,
    7. Freund, S. M.,
    8. Komander, D. and
    9. Randow, F.
    (2012). LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell 48, 329–342. doi:10.1016/j.molcel.2012.08.024
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang, B. S.,
    2. Liu, Y. Z.,
    3. Yang, Y.,
    4. Zhang, Y.,
    5. Hao, J. J.,
    6. Yang, H.,
    7. Wang, X. M.,
    8. Zhang, Z. Q.,
    9. Zhan, Q. M. and
    10. Wang, M. R.
    (2013). Autophagy negatively regulates cancer cell proliferation via selectively targeting VPRBP. Clin. Sci. (Lond.) 124, 203–214. doi:10.1042/CS20120270
    OpenUrlCrossRefPubMed
  52. ↵
    1. Wang, H.,
    2. Bedford, F. K.,
    3. Brandon, N. J.,
    4. Moss, S. J. and
    5. Olsen, R. W.
    (1999). GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397, 69–72. doi:10.1038/16264
    OpenUrlCrossRefPubMed
    1. Wang, J.,
    2. Huo, K.,
    3. Ma, L.,
    4. Tang, L.,
    5. Li, D.,
    6. Huang, X.,
    7. Yuan, Y.,
    8. Li, C.,
    9. Wang, W. and
    10. Guan, W.
    et al.(2011). Toward an understanding of the protein interaction network of the human liver. Mol. Syst. Biol. 7, 536. doi:10.1038/msb.2011.67
    OpenUrlAbstract/FREE Full Text
    1. Waters, S.,
    2. Marchbank, K.,
    3. Solomon, E.,
    4. Whitehouse, C. and
    5. Gautel, M.
    (2009). Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett. 583, 1846–1852. doi:10.1016/j.febslet.2009.04.049
    OpenUrlCrossRefPubMedWeb of Science
  53. ↵
    1. Weidberg, H.,
    2. Shpilka, T.,
    3. Shvets, E.,
    4. Abada, A.,
    5. Shimron, F. and
    6. Elazar, Z.
    (2011). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20, 444–454. doi:10.1016/j.devcel.2011.02.006
    OpenUrlCrossRefPubMed
  54. ↵
    1. Weidberg, H.,
    2. Shvets, E.,
    3. Shpilka, T.,
    4. Shimron, F.,
    5. Shinder, V. and
    6. Elazar, Z.
    (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792–1802. doi:10.1038/emboj.2010.74
    OpenUrlCrossRefPubMedWeb of Science
  55. ↵
    1. Wild, P.,
    2. Farhan, H.,
    3. McEwan, D. G.,
    4. Wagner, S.,
    5. Rogov, V. V.,
    6. Brady, N. R.,
    7. Richter, B.,
    8. Korac, J.,
    9. Waidmann, O. and
    10. Choudhary, C.
    et al.(2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233. doi:10.1126/science.1205405
    OpenUrlAbstract/FREE Full Text
    1. Xie, R.,
    2. Nguyen, S.,
    3. McKeehan, K.,
    4. Wang, F.,
    5. McKeehan, W. L. and
    6. Liu, L.
    (2011). Microtubule-associated protein 1S (MAP1S) bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. J. Biol. Chem. 286, 10367–10377. doi:10.1074/jbc.M110.206532
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Xie, Z. and
    2. Klionsky, D. J.
    (2007). Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102–1109. doi:10.1038/ncb1007-1102
    OpenUrlCrossRefPubMedWeb of Science
  57. ↵
    1. Xin, Y.,
    2. Yu, L.,
    3. Chen, Z.,
    4. Zheng, L.,
    5. Fu, Q.,
    6. Jiang, J.,
    7. Zhang, P.,
    8. Gong, R. and
    9. Zhao, S.
    (2001). Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 74, 408–413. doi:10.1006/geno.2001.6555
    OpenUrlCrossRefPubMedWeb of Science
  58. ↵
    1. Yamaguchi, M.,
    2. Noda, N. N.,
    3. Nakatogawa, H.,
    4. Kumeta, H.,
    5. Ohsumi, Y. and
    6. Inagaki, F.
    (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285, 29599–29607. doi:10.1074/jbc.M110.113670
    OpenUrlAbstract/FREE Full Text
    1. Yamazaki-Sato, H.,
    2. Tanida, I.,
    3. Ueno, T. and
    4. Kominami, E.
    (2003). The carboxyl terminal 17 amino acids within Apg7 are essential for Apg8 lipidation, but not for Apg12 conjugation. FEBS Lett. 551, 71–77. doi:10.1016/S0014-5793(03)00899-8
    OpenUrlCrossRefPubMedWeb of Science
    1. Yi, C.,
    2. Ma, M.,
    3. Ran, L.,
    4. Zheng, J.,
    5. Tong, J.,
    6. Zhu, J.,
    7. Ma, C.,
    8. Sun, Y.,
    9. Zhang, S. and
    10. Feng, W.
    et al.(2012). Function and molecular mechanism of acetylation in autophagy regulation. Science 336, 474–477. doi:10.1126/science.1216990
    OpenUrlAbstract/FREE Full Text
    1. Yu, H.,
    2. Braun, P.,
    3. Yildirim, M. A.,
    4. Lemmens, I.,
    5. Venkatesan, K.,
    6. Sahalie, J.,
    7. Hirozane-Kishikawa, T.,
    8. Gebreab, F.,
    9. Li, N. and
    10. Simonis, N.
    et al.(2008). High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110. doi:10.1126/science.1158684
    OpenUrlAbstract/FREE Full Text
    1. Lee, D. Y.,
    2. Arnott, D. and
    3. Brown, E. J.
    (2013). Ubiquilin4 is an adaptor protein that recruits Ubiquilin1 to the autophagy machinery. EMBO Rep. 14, 373–381. doi:10.1038/embor.2013.22
    OpenUrlCrossRefPubMed
  59. ↵
    1. Zheng, Y. T.,
    2. Shahnazari, S.,
    3. Brech, A.,
    4. Lamark, T.,
    5. Johansen, T. and
    6. Brumell, J. H.
    (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909–5916. doi:10.4049/jimmunol.0900441
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Zhu, Y.,
    2. Massen, S.,
    3. Terenzio, M.,
    4. Lang, V.,
    5. Chen-Lindner, S.,
    6. Eils, R.,
    7. Novak, I.,
    8. Dikic, I.,
    9. Hamacher-Brady, A. and
    10. Brady, N. R.
    (2013). Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288, 1099–1113. doi:10.1074/jbc.M112.399345
    OpenUrlAbstract/FREE Full Text
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Autophagy
  • LC3
  • GABARAP
  • Atg8
  • LIR motif
  • AIM

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The LC3 interactome at a glance
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
CELL SCIENCE AT A GLANCE
The LC3 interactome at a glance
Philipp Wild, David G. McEwan, Ivan Dikic
Journal of Cell Science 2014 127: 3-9; doi: 10.1242/jcs.140426
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
CELL SCIENCE AT A GLANCE
The LC3 interactome at a glance
Philipp Wild, David G. McEwan, Ivan Dikic
Journal of Cell Science 2014 127: 3-9; doi: 10.1242/jcs.140426

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction
    • The six faces of the Atg8 family
    • Characteristics of the LC3-interacting region
    • Members of the core autophagy machinery that contain a LIR motif
    • Autophagy receptors
    • LC3-binding proteins involved in vesicle trafficking and autophagosome maturation
    • Post-translational modifications in the regulation of LC3 interactions
    • Conclusions and perspectives
    • Footnotes
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Translation initiation in cancer at a glance
  • Tumour-directed microenvironment remodelling at a glance
  • FGF2 and IL-1β – explorers of unconventional secretory pathways at a glance
Show more CELL SCIENCE AT A GLANCE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992