Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
CELL SCIENCE AT A GLANCE
Ubiquitin chain diversity at a glance
Masato Akutsu, Ivan Dikic, Anja Bremm
Journal of Cell Science 2016 129: 875-880; doi: 10.1242/jcs.183954
Masato Akutsu
Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: akutsu@em.uni-frankfurt.de bremm@em.uni-frankfurt.de
Ivan Dikic
Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anja Bremm
Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: akutsu@em.uni-frankfurt.de bremm@em.uni-frankfurt.de
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF
Loading

ABSTRACT

Ubiquitin plays an essential role in modulating protein functions, and deregulation of the ubiquitin system leads to the development of multiple human diseases. Owing to its molecular features, ubiquitin can form various homo- and heterotypic polymers on substrate proteins, thereby provoking distinct cellular responses. The concept of multifaceted ubiquitin chains encoding different functions has been substantiated in recent years. It has been established that all possible ubiquitin linkage types are utilized for chain assembly and propagation of specific signals in vivo. In addition, branched ubiquitin chains and phosphorylated ubiquitin molecules have been put under the spotlight recently. The development of novel technologies has provided detailed insights into the structure and function of previously poorly understood ubiquitin signals. In this Cell Science at a Glance article and accompanying poster, we provide an update on the complexity of ubiquitin chains and their physiological relevance.

Introduction

Newly synthesized proteins are frequently customized by attaching a functional group, a sugar moiety or a small protein to further specify their assignment in the cell. A prominent example of an evolutionarily conserved small protein modifier is ubiquitin. Covalent ligation of ubiquitin molecules to substrate proteins causes either elimination of the substrate by the proteasome or a change in substrate activity, localization, affinity to binding partners or other non-proteolytic events. The diversity of cellular consequences mediated by protein ubiquitylation emphasizes the importance of the ubiquitin system in cells.

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Ubiquitin comprises 76 amino acids and is covalently attached through its C-terminus to either substrate proteins or itself through the sequential action of three different enzymes: E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin-ligating enzymes (Clague et al., 2015). Proteins can be modified at one or multiple lysine (K) residues with either a single ubiquitin molecule (mono- and multi-monoubiquitylation, respectively) or ubiquitin polymers (polyubiquitylation). In a ubiquitin chain, ubiquitin moieties can be conjugated through one of their lysine residues (K6, K11, K27, K29, K33, K48 and K63) or the N-terminal methionine residue (M1), offering countless possibilities to assemble a specific polymer. Ubiquitin chains that comprise only a single linkage type are called homotypic. In contrast, heterotypic chains contain mixed linkages within the same polymer. The assortment of ubiquitin chains used in vivo further increases given that heterotypic chains can also be branched – i.e. one ubiquitin molecule is ubiquitylated at two or more sites (Meyer and Rape, 2014). Finally, ubiquitin molecules can also be modified by other post-translational modifications, including acetylation (Ohtake et al., 2015) and phosphorylation (Kane et al., 2014; Kazlauskaite et al., 2014; Koyano et al., 2014; Ordureau et al., 2014; Swaney et al., 2015), representing yet another layer of ubiquitin signal regulation and/or diversification (Herhaus and Dikic, 2015).

In order to propagate the information encoded in a ubiquitin chain, cells have evolved a range of specific domains (ubiquitin binding domains, UBDs) that recognize and bind to distinct surface patches on ubiquitin (Husnjak and Dikic, 2012). Importantly, ubiquitylation is a reversible modification, and linkages between ubiquitin molecules or ubiquitin and substrate proteins are hydrolyzed by deubiquitylating enzymes (DUBs) (Clague et al., 2013).

For many years, ubiquitin research was limited to K48- and K63-linked polymers, mainly owing to the lack of tools and the uncertainty as to whether any of the remaining linkage types existed in cells, which at that time were considered to be atypical. Thanks to innovative technologies, more detailed studies on K11- and M1-linked ubiquitin chains were possible in the late 2000s and revealed roles for these chain types in human cell cycle control and cytokine signaling, respectively (Shimizu et al., 2015; Wickliffe et al., 2011). In the past few years, a plethora of novel data emerged regarding the remaining ubiquitin linkage types. These studies advanced our understanding of how atypical ubiquitin chains control cellular processes and let us appreciate the diversity of ubiquitin signals. Here, we will delineate the physiological function of atypical protein ubiquitylation, including the impact of phosphorylated (phospho)-ubiquitin.

Structural features of ubiquitin

The variety of cellular processes initiated and regulated by ubiquitin has been explained in part by the structural diversity of differently linked ubiquitin chains. Ubiquitin features several surface patches that are recognized by UBDs – e.g. the hydrophobic areas centered on residues I44 and I36. These patches are positioned relative to each other in a characteristic manner in distinct ubiquitin polymers. Although ubiquitin chains are dynamic entities, structural analyses, mainly using X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, have shown that ubiquitin dimers that are linked to K6, K11, K29, K33 and K48 can form intramolecular interfaces between two ubiquitin moieties (Bremm et al., 2010; Cook et al., 1992; Hospenthal et al., 2013; Kristariyanto et al., 2015a,b; Matsumoto et al., 2010; Michel et al., 2015). In contrast, K63- and M1-linked di-ubiquitin moieties adopt predominantly open conformations with no contact sites except that at the linkage point (Komander et al., 2009). Furthermore, the protein kinase PINK1 can phosphorylate ubiquitin on residue S65, which results in two structural conformations of the monomer in solution (Wauer et al., 2015a). Together, these features assist in ubiquitin chain discrimination by UBD-containing proteins and DUBs to achieve signal specificity (see poster). In addition to ubiquitin conjugate topology, other aspects, such as cellular localization of enzymes and substrates, or the timing and reversibility of the ubiquitylation reaction, contribute to ensuring the correct fate of the countless proteins tagged with ubiquitin in a cell (Kim et al., 2011).

Biology of the ubiquitin code

Ubiquitin was first described as a post-translational modification that targets proteins for degradation by the 26S proteasome (Hershko and Ciechanover, 1998). When determining the existence of alternative forms of ubiquitin chains in yeast, a non-proteolytic role for K63 linkages in DNA repair had already been suggested in the mid-1990s (Spence et al., 1995). Both K48- and K63-linked ubiquitin chains and their physiological impact have been extensively reviewed elsewhere (Clague and Urbé, 2010; Komander and Rape, 2012); below, we will discuss more recent observations for the role of the remaining ubiquitin linkage types.

K6 linkages – still much to learn

The cellular functions of K6-linked ubiquitin chains are currently unclear. The overall abundance of K6 linkages does not increase with proteasome inhibition (Kim et al., 2011; Wagner et al., 2011). K6 linkages have been indirectly associated with DNA repair events through the heterodimeric ubiquitin E3 ligase BRCA1–BARD1. This tumor suppressor has been reported to assemble ubiquitin polymers containing K6 linkages on itself and on substrates (Morris and Solomon, 2004; Nishikawa et al., 2004), which does not result in destabilization of these proteins.

It has also been observed that K6 and K33 linkages increase in response to UV radiation (Elia et al., 2015), but further studies are necessary in order to elucidate the function of these atypical linkage types in this context.

Recently, K6 linkages have been identified in ubiquitylated mitochondrial outer membrane (MOM) proteins upon depolarization of the organelle. The total abundance of ubiquitin conjugated by the E3 ligase Parkin (encoded by PARK2) to depolarized mitochondria increases approximately sixfold (Ordureau et al., 2014). Using absolute quantification (AQUA) proteomics, it has been shown that the elevated ubiquitin content primarily comprises K6, K11, K48 and K63 linkages. Further support for a crucial role of K6-linked ubiquitin chains has been provided by a ubiquitin replacement strategy in U2OS cells, wherein all endogenous copies of ubiquitin were deleted and replaced by either exogenous wild-type or mutant ubiquitin. Using these cells, it has been demonstrated that mitophagy is significantly delayed in cells expressing K6R or K63R mutant ubiquitin (Ordureau et al., 2015a). The mitochondrion-localized DUB USP30 counteracts inappropriate ubiquitylation of healthy mitochondria (Bingol et al., 2014; Cunningham et al., 2015; Liang et al., 2015; Wang et al., 2015). Interestingly, USP30 preferentially removes K6 and K11 linkages from MOM proteins (Cunningham et al., 2015). In addition, the DUB USP8 selectively removes K6-linked ubiquitin chains from Parkin and opposes its autoubiquitylation (Durcan et al., 2014), further connecting this linkage type to mitochondrial quality control. However, the exact function of K6 linkages in this context remains to be elucidated.

K11 linkages in heterotypic ubiquitin conjugates – a powerful degradation signal

The metazoan anaphase-promoting complex (APC/C) assembles K11-linked ubiquitin chains to drive proteasomal degradation and mitotic exit. The abundance of K11 linkages strongly increases when APC/C is active during mitosis (Matsumoto et al., 2010). The APC/C initiates chain formation on its substrates together with the E2 enzyme UBE2C. Although UBE2C preferentially assembles K11 linkages (Jin et al., 2008), it also synthesizes K48 and K63 linkages (Kirkpatrick et al., 2006). Subsequently, APC/C elongates substrate-attached ubiquitin by utilizing a second E2 enzyme, UBE2S (Garnett et al., 2009; Williamson et al., 2009; Wu et al., 2010). Interestingly, UBE2S does not simply extend a ubiquitin chain but branches multiple K11-linked polymers off of the ubiquitin molecules that have already been attached by UBE2C (Meyer and Rape, 2014). These branched conjugates are potent proteolytic degradation signals as the proteasome receptor S5A recognizes them more efficiently than homotypic K11- or K48-linked ubiquitin chains (Meyer and Rape, 2014). Another study even suggests that homotypic K11-linked conjugates do not bind with sufficient affinity or avidity to the 26S proteasome to stimulate substrate degradation (Grice et al., 2015). However, the authors show that heterotypic chains containing K11 and K48 linkages bind to the proteasome and stimulate degradation of the cell cycle regulator cyclin B1.

Recently, a middle-down mass spectrometry approach has been established that uses restricted trypsin-mediated digestion to detect multiple modifications on a single ubiquitin moiety (Valkevich et al., 2014). This method allows detection of branched polyubiquitin that has been formed by various enzymatic systems – e.g. by the bacterial effector E3 ligase NleL, as well as the potential presence of these conjugates in cell and tissue extracts.

In addition to its role in human cell cycle control, K11-linked ubiquitin chains have been implicated in the cellular adaptation to hypoxia. It has been shown that the K11-linkage-specific DUB Cezanne (OTUD7B) (Bremm et al., 2010; Mevissen et al., 2013) regulates stability of the transcription factor HIF-1α (Bremm et al., 2014) and expression levels of HIF-2α (Moniz et al., 2015). However, in this context, the exact topology of the ubiquitin signal is not yet understood. Future analyses of HIF-1α ubiquitylation will determine whether K11 linkages are incorporated into mixed chains and how these polymers provoke, for example, proteasome-dependent and -independent degradation of the transcription factor.

K27 linkages – involved in the DNA damage response and innate immunity

Upon DNA damage, the serine/threonine protein kinase ATM is activated and elicits a cascade of phosphorylation and ubiquitylation events that trigger the DNA damage response (DDR) through multiple downstream effectors. Recently, Penengo and colleagues have investigated the functional relevance of different types of ubiquitylation in the DDR (Gatti et al., 2015) and observed that RNF168 promotes K27-linked polyubiquitylation of histone 2A (H2A) proteins and that this linkage represents the major ubiquitin chain type on chromatin upon DNA damage, as shown by using selected reaction-monitoring mass spectrometry. Crucial DDR mediators such as 53BP1, Rap80, RNF168 and RNF169 recognize these K27-linked ubiquitin chains on histones H2A and H2A.X, and the inability of a cell to form K27 linkages prevents activation of the DDR because mediators can no longer be recruited (Gatti et al., 2015).

A second report connects K27 linkages to host immune responses that are triggered by microbial DNA (Wang et al., 2014). Invading nucleic acids trigger the activation of the interferon regulatory factor-3 (IRF-3) and/or NF-κB signaling pathways, thus inducing expression of type-I interferons (IFNs) and proinflammatory cytokines. Signals elicited by proteins that sense the presence of exogenous DNAs in the cytoplasm converge on ‘stimulator of interferon genes’ (STING; also known as TMEM173), a transmembrane protein in the endoplasmic reticulum (ER). Microbial DNA triggers STING dimerization and its migration from the ER to the perinuclear microsome compartment (Ishikawa et al., 2009). At the same time, TANK-binding kinase 1 (TBK1) is recruited to this compartment in a STING-dependent manner (Ishikawa et al., 2009), which is a prerequisite for kinase activation and subsequent activation of the transcription factor IRF-3. Insulin-induced gene 1 (INSIG1) targets the E3 ligase autocrine motility factor receptor (AMFR, also known as gp78) to the STING protein complex upon microbial DNA invasion. Subsequently, AMFR catalyzes K27-linked polyubiquitylation of STING, which serves as a scaffold for the recruitment and activation of TBK1 (Wang et al., 2014). Of note, it has been shown that AMFR interacts with the E2 enzyme UBE2G2 through a specialized binding region on AMFR, and that this interaction is a prerequisite for processive assembly of K48-linked ubiquitin chains on ER-associated degradation (ERAD) substrates (Das et al., 2013, 2009). It would be exciting to uncover the molecular mechanisms of how AMFR can also assemble K27-linked ubiquitin chains.

Taken together, the discussed examples show that K27 linkages can precisely propagate signals within a cell by providing a dynamic tag that is specifically recognized by mediator proteins.

K29 linkages – an inhibitor of Wnt signaling

The Wnt/β-catenin signaling pathway plays essential roles in embryogenesis, and its deregulation has been associated with tumorigenesis and multiple other human diseases (Clevers and Nusse, 2012). Propagation of Wnt signaling is regulated by protein ubiquitylation at various steps, and K48- and K63-linked ubiquitin chains in particular have been linked to this pathway (Tauriello and Maurice, 2010). The canonical Wnt signaling pathway controls the stability of β-catenin. Under basal conditions, a destruction complex comprising two serine/threonine kinases – GSK-3 and CKI – and two scaffold proteins – Axin and APC, promotes degradation of β-catenin. Wnt ligands lead to inactivation of this destruction complex, allowing β-catenin to accumulate, translocate to the nucleus, and, together with its partner TCF/LEF-family member, activate a transcriptional program (Clevers and Nusse, 2012). Recently, the ubiquitin E3 ligase Smad ubiquitylation regulatory factor 1 (Smurf1) has been shown to modify Axin with non-degradable K29-linked ubiquitin polymers (Fei et al., 2013). K29-polyubiquitylation of Axin disrupts its interaction with the Wnt co-receptors LRP5 and LRP6 (LRP5/6), which subsequently attenuates Wnt-stimulated LRP6 phosphorylation and represses Wnt/β-catenin signaling (Fei et al., 2013). Interestingly, the OTU family DUB Trabid (also known in mammals as ZRANB1), which is a positive regulator of Wnt-induced transcription, shows a strong preference for K29 and K33 linkages (Kristariyanto et al., 2015a; Licchesi et al., 2012; Mevissen et al., 2013; Michel et al., 2015; Virdee et al., 2010). Trabid has been suggested to interact with and to deubiquitylate APC (Tran et al., 2008). Given its linkage preference, it would be insightful to investigate whether Trabid exerts its positive regulatory function on the Wnt signaling pathway also by removing inhibitory K29-linked ubiquitin chains from Axin.

K33 linkages – a new player in anterograde protein trafficking

K33-linked ubiquitin chains are associated with negative regulation of both T-cell antigen receptor (TCR) (Huang et al., 2010) and AMP-activated protein kinase (AMPK)-related protein kinases (Al-Hakim et al., 2008). More recently, K33 linkages have been implicated in post-Golgi protein trafficking (Yuan et al., 2014). So far, mainly K63-linkaged ubiquitin chains have been described in both endocytic and secretory pathways, in which they serve as sorting signals for membrane proteins. It has now been shown that the Cullin–RING ubiquitin E3 ligase Cul3–KLHL20 attaches non-degradable K33-linked ubiquitin chains onto coronin7 (Crn7). This modification of Crn7 creates a binding surface for the tandem-ubiquitin-interacting motif (UIM) of Eps15, a UBD-containing clathrin adaptor required for post-Golgi trafficking. Binding of K33-ubiquitylated Crn7 to Eps15 promotes Crn7 recruitment to the trans-Golgi network (TGN), where it binds to F-actin and prevents its depolymerization. This action contributes to the assembly of a TGN-localized pool of F-actin, and to the generation and elongation of TGN-derived carrier tubules (Yuan et al., 2014).

M1 linkages – key regulator in NF-κB signaling

Linear ubiquitin chains – i.e. M1-linked chains – play pivotal roles in inflammatory and immune responses by regulating the activation of the transcription factor NF-κB. Activated cytokine receptors and toll-like receptors (TLRs) recruit multiple proteins, including kinases and E3 ubiquitin ligases, and resultant phosphorylation and ubiquitylation lead to the activation of effector proteins. Activated inhibitor of κB (IκB) kinase (IKK) complex causes phosphorylation and degradation of the NF-κB inhibitor IκB, resulting in nuclear translocation of NF-κB (Karin and Ben-Neriah, 2000). In the NF-κB signaling pathway, M1-linked chains are assembled by LUBAC, a multi-subunit E3 ligase comprising HOIP (also known as RNF31), HOIL-1L (also known as RBCK1) and SHARPIN. LUBAC utilizes the N-terminal methionine (M1) residue of ubiquitin instead of lysine for chain formation (Kirisako et al., 2006; Walczak et al., 2012). NEMO (also known as IKBKG), a subunit of the IKK complex is modified with M1-linked chains (Gerlach et al., 2011; Ikeda et al., 2011; Tokunaga et al., 2009). Moreover, NEMO harbors a linear-chain-specific UBD [ubiquitin binding in ABIN and NEMO (UBAN)] that is required for full activation of IKK (Rahighi et al., 2009). Additionally, Myd88-dependent formation of M1–K63 hybrid chains is also involved in the activation of IKK. M1–K63 hybrid chains co-recruit the TAK1 and IKK complexes through the interaction of IKKα and IKKβ – the other subunits of IKK complex – with K63-linkages, and NEMO with an M1 linkage so that TAK1 can activate IKKα and IKKβ (Emmerich et al., 2013). Furthermore, the regulation of NF-κB is balanced by ubiquitylation and deubiquitylation. ‘OTU domain DUB with linear linkage specificity’ (OTULIN) is a unique member of the OTU-family of DUBs; its catalytic site is inactive and it is unable to hydrolyze isopeptide linkages of ubiquitin chains. However, the unique orientation of distal and proximal ubiquitin moieties in M1-linked chains allows the proximal ubiquitin moiety to activate the protease by complementing the active site with a glutamate residue (Keusekotten et al., 2013; Rivkin et al., 2013). Thereby OTULIN can only cleave peptide bonds present in M1-linked chains (Keusekotten et al., 2013; Rivkin et al., 2013). This M1-linked-chain-specific OTULIN interacts with HOIP, the catalytic core subunit of LUBAC, forming a functional complex that regulates the production of linear chains (Elliott et al., 2014; Schaeffer et al., 2014). Besides OTULIN, USP10 (Niu et al., 2013) and the cylindromatosis tumor suppressor (CYLD) have been shown to counteract LUBAC-mediated linear ubiquitylation. Similar to OTULIN, CYLD associates with the PUB domain of HOIP (Takiuchi et al., 2014). Notably, after the discovery of linear ubiquitin chains and their role in the regulation of innate immune signaling, other cellular functions relating to this linkage type are beginning to emerge. The involvement of linear ubiquitin chains in Wnt signaling has been inferred from the interaction between OTULIN and disheveled 2 (DVL2), which is a crucial Wnt signaling effector (Rivkin et al., 2013; Takiuchi et al., 2014).

Phospho-ubiquitin – driver of Parkin-mediated mitophagy

The recent observation that ubiquitin itself can be phosphorylated and acetylated has resulted in an even larger diversity of the ubiquitin code (Herhaus and Dikic, 2015). Phospho-ubiquitin has been linked to mitochondrial quality control through mitophagy and, in this context, to neurological disorders such as Parkinson's disease. The protein kinase PINK1 phosphorylates residue S65 of ubiquitin, which is required for allosteric activation of the ubiquitin ligase Parkin and is essential for the recruitment of the autophagic machinery, including autophagy receptors (Kane et al., 2014; Kazlauskaite et al., 2014, 2015; Koyano et al., 2014; Kumar et al., 2015; Lazarou et al., 2015; Ordureau et al., 2014; Sauvé et al., 2015; Swaney et al., 2015; Wauer et al., 2015a,b). These events promote the assembly of K6-, K11-, K48- and K63-linked ubiquitin chains on numerous MOM proteins by Parkin (Cunningham et al., 2015; Ordureau et al., 2014; Sarraf et al., 2014). Polyubiquitin chains that are attached by Parkin are also phosphorylated by PINK1, which further promotes Parkin retention and attracts autophagy receptors to the damaged organelle (Heo et al., 2015; Lazarou et al., 2015; Ordureau et al., 2015a). These feed-backward and feed-forward mechanisms amplify the ubiquitin signal on damaged mitochondria and ensure their efficient delivery for lysosomal degradation (more details discussed in Herhaus and Dikic, 2015).

Conclusions

The complexity and diversity of the polyubiquitin chains that can form on substrate proteins has been even more appreciated since the latest mass spectrometric techniques have been applied to the ubiquitin research field (Ordureau et al., 2015b). Importantly, these proteomic approaches complement the wide-spread use of ubiquitin mutants, which bear the risk of producing artifacts. As illustrated in this short review, our understanding of the ubiquitin system has increased substantially. For most of the ubiquitin chain types, defined physiological functions have been suggested and open questions from the past are at least partly solved. The presence of branched and post-translationally modified ubiquitin in vivo has been demonstrated. Thanks to structural analyses, for many UBD-containing proteins and DUBs, we now understand how they specifically recognize distinct linkage types and propagate the ubiquitin code. However, numerous future challenges remain. Our knowledge regarding ubiquitin chain length, the exact topology of ubiquitin signals and ubiquitin dynamics in vivo is still very limited. But continuous advancement of methodology will help to answer these questions (Cannon et al., 2015). In recent years, each layer of the ubiquitin system has attracted attention as potential novel targets for molecular therapy. A better understanding of the physiological functions and control mechanisms, especially of ubiquitin E3 ligases and DUBs, will help to further the development of inhibitors that could potentially move into the clinic.

Acknowledgements

We wish to thank Daniela Höller for critical reading of the manuscript. We apologize to all colleagues whose work could not be discussed owing to space limitations.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Funding

    The laboratory of M.A. is funded by the Leibniz Award (to I.D.); the Cluster of Excellence ‘Macromolecular Complexes’ (project EXC115); and the Volkswagen Stiftung. Research in the Dikic laboratory is supported by the Deutsche Forschungsgemeinschaft; the Cluster of Excellence ‘Macromolecular Complexes’ (project EXC115); LOEWE UbNet and LOEWE Centrum for Cell and Gene Therapy, Frankfurt; and the Sonderforschungsbereich (SFB) 1177. The laboratory of A.B. is funded by the Deutsche Forschungsgemeinschaft (Emmy Noether Program and SFB 1177).

  • Cell science at a glance

    A high-resolution version of the poster is available for downloading at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.183954/-/DC1. Individual poster panels are available as JPEG files at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.183954/-/DC2.

  • © 2016. Published by The Company of Biologists Ltd

References

  1. ↵
    1. Al-Hakim, A. K.,
    2. Zagorska, A.,
    3. Chapman, L.,
    4. Deak, M.,
    5. Peggie, M. and
    6. Alessi, D. R.
    (2008). Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem. J. 411, 249-260. doi:10.1042/BJ20080067
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Bingol, B.,
    2. Tea, J. S.,
    3. Phu, L.,
    4. Reichelt, M.,
    5. Bakalarski, C. E.,
    6. Song, Q.,
    7. Foreman, O.,
    8. Kirkpatrick, D. S. and
    9. Sheng, M.
    (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375. doi:10.1038/nature13418
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Bremm, A.,
    2. Freund, S. M. V. and
    3. Komander, D.
    (2010). Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol. 17, 939-947. doi:10.1038/nsmb.1873
    OpenUrlCrossRefPubMedWeb of Science
  4. ↵
    1. Bremm, A.,
    2. Moniz, S.,
    3. Mader, J.,
    4. Rocha, S. and
    5. Komander, D.
    (2014). Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep. 15, 1268-1277. doi:10.15252/embr.201438850
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Cannon, J. R.,
    2. Martinez-Fonts, K.,
    3. Robotham, S. A.,
    4. Matouschek, A. and
    5. Brodbelt, J. S.
    (2015). Top-down 193-nm ultraviolet photodissociation mass spectrometry for simultaneous determination of polyubiquitin chain length and topology. Anal. Chem. 87, 1812-1820. doi:10.1021/ac5038363
    OpenUrlCrossRef
  6. ↵
    1. Clague, M. J. and
    2. Urbé, S.
    (2010). Ubiquitin: same molecule, different degradation pathways. Cell 143, 682-685. doi:10.1016/j.cell.2010.11.012
    OpenUrlCrossRefPubMedWeb of Science
  7. ↵
    1. Clague, M. J.,
    2. Barsukov, I.,
    3. Coulson, J. M.,
    4. Liu, H.,
    5. Rigden, D. J. and
    6. Urbe, S.
    (2013). Deubiquitylases From Genes to Organism. Physiol. Rev. 93, 1289-1315. doi:10.1152/physrev.00002.2013
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Clague, M. J.,
    2. Heride, C. and
    3. Urbé, S.
    (2015). The demographics of the ubiquitin system. Trends Cell Biol. 25, 417-426. doi:10.1016/j.tcb.2015.03.002
    OpenUrlCrossRefPubMed
  9. ↵
    1. Clevers, H. and
    2. Nusse, R.
    (2012). Wnt/β-catenin signaling and disease. Cell 149, 1192-1205. doi:10.1016/j.cell.2012.05.012
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Cook, W. J.,
    2. Jeffrey, L. C.,
    3. Carson, M.,
    4. Chen, Z. and
    5. Pickart, C. M.
    (1992). Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J. Biol. Chem. 267, 16467-16471.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Cunningham, C. N.,
    2. Baughman, J. M.,
    3. Phu, L.,
    4. Tea, J. S.,
    5. Yu, C.,
    6. Coons, M.,
    7. Kirkpatrick, D. S.,
    8. Bingol, B. and
    9. Corn, J. E.
    (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160-169. doi:10.1038/ncb3097
    OpenUrlCrossRefPubMed
  12. ↵
    1. Das, R.,
    2. Mariano, J.,
    3. Tsai, Y. C.,
    4. Kalathur, R. C.,
    5. Kostova, Z.,
    6. Li, J.,
    7. Tarasov, S. G.,
    8. McFeeters, R. L.,
    9. Altieri, A. S.,
    10. Ji, X. et al.
    (2009). Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34, 674-685. doi:10.1016/j.molcel.2009.05.010
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Das, R.,
    2. Liang, Y.-H.,
    3. Mariano, J.,
    4. Li, J.,
    5. Huang, T.,
    6. King, A.,
    7. Tarasov, S. G.,
    8. Weissman, A. M.,
    9. Ji, X. and
    10. Byrd, R. A.
    (2013). Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J. 32, 2504-2516. doi:10.1038/emboj.2013.174
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Durcan, T. M.,
    2. Tang, M. Y.,
    3. Pérusse, J. R.,
    4. Dashti, E. A.,
    5. Aguileta, M. A.,
    6. McLelland, G.-L.,
    7. Gros, P.,
    8. Shaler, T. A.,
    9. Faubert, D.,
    10. Coulombe, B. et al.
    (2014). USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473-2491. doi:10.15252/embj.201489729
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Elia, A. E. H.,
    2. Boardman, A. P.,
    3. Wang, D. C.,
    4. Huttlin, E. L.,
    5. Everley, R. A.,
    6. Dephoure, N.,
    7. Zhou, C.,
    8. Koren, I.,
    9. Gygi, S. P. and
    10. Elledge, S. J.
    (2015). Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 59, 867-881. doi:10.1016/j.molcel.2015.05.006
    OpenUrlCrossRefPubMed
  16. ↵
    1. Elliott, P. R.,
    2. Nielsen, S. V.,
    3. Marco-Casanova, P.,
    4. Fiil, B. K.,
    5. Keusekotten, K.,
    6. Mailand, N.,
    7. Freund, S. M. V.,
    8. Gyrd-Hansen, M. and
    9. Komander, D.
    (2014). Molecular basis and regulation of OTULIN-LUBAC interaction. Mol. Cell 54, 335-348. doi:10.1016/j.molcel.2014.03.018
    OpenUrlCrossRefPubMed
  17. ↵
    1. Emmerich, C. H.,
    2. Ordureau, A.,
    3. Strickson, S.,
    4. Arthur, J. S. C.,
    5. Pedrioli, P. G. A.,
    6. Komander, D. and
    7. Cohen, P.
    (2013). Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl. Acad. Sci. USA 110, 15247-15252. doi:10.1073/pnas.1314715110
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Fei, C.,
    2. Li, Z.,
    3. Li, C.,
    4. Chen, Y.,
    5. Chen, Z.,
    6. He, X.,
    7. Mao, L.,
    8. Wang, X.,
    9. Zeng, R. and
    10. Li, L.
    (2013). Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-catenin signaling. Mol. Cell. Biol. 33, 4095-4105. doi:10.1128/MCB.00418-13
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Garnett, M. J.,
    2. Mansfeld, J.,
    3. Godwin, C.,
    4. Matsusaka, T.,
    5. Wu, J.,
    6. Russell, P.,
    7. Pines, J. and
    8. Venkitaraman, A. R.
    (2009). UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat. Cell Biol. 11, 1363-1369. doi:10.1038/ncb1983
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Gatti, M.,
    2. Pinato, S.,
    3. Maiolica, A.,
    4. Rocchio, F.,
    5. Prato, M. G.,
    6. Aebersold, R. and
    7. Penengo, L.
    (2015). RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep. 10, 226-238. doi:10.1016/j.celrep.2014.12.021
    OpenUrlCrossRefPubMed
  21. ↵
    1. Gerlach, B.,
    2. Cordier, S. M.,
    3. Schmukle, A. C.,
    4. Emmerich, C. H.,
    5. Rieser, E.,
    6. Haas, T. L.,
    7. Webb, A. I.,
    8. Rickard, J. A.,
    9. Anderton, H.,
    10. Wong, W. W.-L. et al.
    (2011). Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591-596. doi:10.1038/nature09816
    OpenUrlCrossRefPubMedWeb of Science
  22. ↵
    1. Grice, G. L.,
    2. Lobb, I. T.,
    3. Weekes, M. P.,
    4. Gygi, S. P.,
    5. Antrobus, R. and
    6. Nathan, J. A.
    (2015). The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Rep. 12, 545-553. doi:10.1016/j.celrep.2015.06.061
    OpenUrlCrossRefPubMed
  23. ↵
    1. Heo, J.-M.,
    2. Ordureau, A.,
    3. Paulo, J. A.,
    4. Rinehart, J. and
    5. Harper, J. W.
    (2015). The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 Activation to promote mitophagy. Mol. Cell 60, 7-20. doi:10.1016/j.molcel.2015.08.016
    OpenUrlCrossRefPubMed
  24. ↵
    1. Herhaus, L. and
    2. Dikic, I.
    (2015). Expanding the ubiquitin code through post-translational modification. EMBO Rep. 16, 1071-1083. doi:10.15252/embr.201540891
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Hershko, A. and
    2. Ciechanover, A.
    (1998). The ubiquitin system. Annu. Rev. Biochem. 67, 425-479. doi:10.1146/annurev.biochem.67.1.425
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. Hospenthal, M. K.,
    2. Freund, S. M. V. and
    3. Komander, D.
    (2013). Assembly, analysis and architecture of atypical ubiquitin chains. Nat. Struct. Mol. Biol. 20, 555-565. doi:10.1038/nsmb.2547
    OpenUrlCrossRefPubMed
  27. ↵
    1. Huang, H.,
    2. Jeon, M.-S.,
    3. Liao, L.,
    4. Yang, C.,
    5. Elly, C.,
    6. Yates, J. R., III. and
    7. Liu, Y.-C.
    (2010). K33-linked polyubiquitination of T cell receptor-ζ regulates proteolysis-independent T cell signaling. Immunity 33, 60-70. doi:10.1016/j.immuni.2010.07.002
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    1. Husnjak, K. and
    2. Dikic, I.
    (2012). Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291-322. doi:10.1146/annurev-biochem-051810-094654
    OpenUrlCrossRefPubMedWeb of Science
  29. ↵
    1. Ikeda, F.,
    2. Deribe, Y. L.,
    3. Skånland, S. S.,
    4. Stieglitz, B.,
    5. Grabbe, C.,
    6. Franz-Wachtel, M.,
    7. van Wijk, S. J. L.,
    8. Goswami, P.,
    9. Nagy, V.,
    10. Terzic, J. et al.
    (2011). SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637-641. doi:10.1038/nature09814
    OpenUrlCrossRefPubMedWeb of Science
  30. ↵
    1. Ishikawa, H.,
    2. Ma, Z. and
    3. Barber, G. N.
    (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788-792. doi:10.1038/nature08476
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Jin, L.,
    2. Williamson, A.,
    3. Banerjee, S.,
    4. Philipp, I. and
    5. Rape, M.
    (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653-665. doi:10.1016/j.cell.2008.04.012
    OpenUrlCrossRefPubMedWeb of Science
  32. ↵
    1. Kane, L. A.,
    2. Lazarou, M.,
    3. Fogel, A. I.,
    4. Li, Y.,
    5. Yamano, K.,
    6. Sarraf, S. A.,
    7. Banerjee, S. and
    8. Youle, R. J.
    (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143-153. doi:10.1083/jcb.201402104
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Karin, M. and
    2. Ben-Neriah, Y.
    (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18, 621-663. doi:10.1146/annurev.immunol.18.1.621
    OpenUrlCrossRefPubMedWeb of Science
  34. ↵
    1. Kazlauskaite, A.,
    2. Kondapalli, C.,
    3. Gourlay, R.,
    4. Campbell, D. G.,
    5. Ritorto, M. S.,
    6. Hofmann, K.,
    7. Alessi, D. R.,
    8. Knebel, A.,
    9. Trost, M. and
    10. Muqit, M. M. K.
    (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser 65. Biochem. J. 460, 127-141. doi:10.1042/BJ20140334
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Kazlauskaite, A.,
    2. Martinez-Torres, R. J.,
    3. Wilkie, S.,
    4. Kumar, A.,
    5. Peltier, J.,
    6. Gonzalez, A.,
    7. Johnson, C.,
    8. Zhang, J.,
    9. Hope, A. G.,
    10. Peggie, M. et al.
    (2015). Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16, 939-954. doi:10.15252/embr.201540352
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Keusekotten, K.,
    2. Elliott, P. R.,
    3. Glockner, L.,
    4. Fiil, B. K.,
    5. Damgaard, R. B.,
    6. Kulathu, Y.,
    7. Wauer, T.,
    8. Hospenthal, M. K.,
    9. Gyrd-Hansen, M.,
    10. Krappmann, D. et al.
    (2013). OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312-1326. doi:10.1016/j.cell.2013.05.014
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Kim, W.,
    2. Bennett, E. J.,
    3. Huttlin, E. L.,
    4. Guo, A.,
    5. Li, J.,
    6. Possemato, A.,
    7. Sowa, M. E.,
    8. Rad, R.,
    9. Rush, J.,
    10. Comb, M. J. et al.
    (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325-340. doi:10.1016/j.molcel.2011.08.025
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. Kirisako, T.,
    2. Kamei, K.,
    3. Murata, S.,
    4. Kato, M.,
    5. Fukumoto, H.,
    6. Kanie, M.,
    7. Sano, S.,
    8. Tokunaga, F.,
    9. Tanaka, K. and
    10. Iwai, K.
    (2006). A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877-4887. doi:10.1038/sj.emboj.7601360
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Kirkpatrick, D. S.,
    2. Hathaway, N. A.,
    3. Hanna, J.,
    4. Elsasser, S.,
    5. Rush, J.,
    6. Finley, D.,
    7. King, R. W. and
    8. Gygi, S. P.
    (2006). Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700-710. doi:10.1038/ncb1436
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    1. Komander, D. and
    2. Rape, M.
    (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203-229. doi:10.1146/annurev-biochem-060310-170328
    OpenUrlCrossRefPubMedWeb of Science
  41. ↵
    1. Komander, D.,
    2. Reyes-Turcu, F.,
    3. Licchesi, J. D. F.,
    4. Odenwaelder, P.,
    5. Wilkinson, K. D. and
    6. Barford, D.
    (2009). Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466-473. doi:10.1038/embor.2009.55
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Koyano, F.,
    2. Okatsu, K.,
    3. Kosako, H.,
    4. Tamura, Y.,
    5. Go, E.,
    6. Kimura, M.,
    7. Kimura, Y.,
    8. Tsuchiya, H.,
    9. Yoshihara, H.,
    10. Hirokawa, T. et al.
    (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166. doi:10.1038/nature13392
    OpenUrlCrossRef
  43. ↵
    1. Kristariyanto, Y. A.,
    2. Abdul Rehman, S. A.,
    3. Campbell, D. G.,
    4. Morrice, N. A.,
    5. Johnson, C.,
    6. Toth, R. and
    7. Kulathu, Y.
    (2015a). K29-Selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of K29 polyubiquitin. Mol. Cell 58, 83-94. doi:10.1016/j.molcel.2015.01.041
    OpenUrlCrossRefPubMed
  44. ↵
    1. Kristariyanto, Y. A.,
    2. Choi, S.-Y.,
    3. Rehman, S. A. A.,
    4. Ritorto, M. S.,
    5. Campbell, D. G.,
    6. Morrice, N. A.,
    7. Toth, R. and
    8. Kulathu, Y.
    (2015b). Assembly and structure of Lys 33-linked polyubiquitin reveals distinct conformations. Biochem. J. 467, 345-352. doi:10.1042/BJ20141502
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Kumar, A.,
    2. Aguirre, J. D.,
    3. Condos, T. E.,
    4. Martinez-Torres, R. J.,
    5. Chaugule, V. K.,
    6. Toth, R.,
    7. Sundaramoorthy, R.,
    8. Mercier, P.,
    9. Knebel, A.,
    10. Spratt, D. E. et al.
    (2015). Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34, 2506-2521. doi:10.15252/embj.201592337
    OpenUrlCrossRefPubMed
  46. ↵
    1. Lazarou, M.,
    2. Sliter, D. A.,
    3. Kane, L. A.,
    4. Sarraf, S. A.,
    5. Wang, C.,
    6. Burman, J. L.,
    7. Sideris, D. P.,
    8. Fogel, A. I. and
    9. Youle, R. J.
    (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314. doi:10.1038/nature14893
    OpenUrlCrossRefPubMed
  47. ↵
    1. Liang, J.-R.,
    2. Martinez, A.,
    3. Lane, J. D.,
    4. Mayor, U.,
    5. Clague, M. J. and
    6. Urbé, S.
    (2015). USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep. 16, 618-627. doi:10.15252/embr.201439820
    OpenUrlCrossRefPubMed
  48. ↵
    1. Licchesi, J. D. F.,
    2. Mieszczanek, J.,
    3. Mevissen, T. E. T.,
    4. Rutherford, T. J.,
    5. Akutsu, M.,
    6. Virdee, S.,
    7. El Oualid, F.,
    8. Chin, J. W.,
    9. Ovaa, H.,
    10. Bienz, M. et al.
    (2012). An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat. Struct. Mol. Biol. 19, 62-71. doi:10.1038/nsmb.2169
    OpenUrlCrossRefPubMed
  49. ↵
    1. Matsumoto, M. L.,
    2. Wickliffe, K. E.,
    3. Dong, K. C.,
    4. Yu, C.,
    5. Bosanac, I.,
    6. Bustos, D.,
    7. Phu, L.,
    8. Kirkpatrick, D. S.,
    9. Hymowitz, S. G.,
    10. Rape, M. et al.
    (2010). K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell 39, 477-484. doi:10.1016/j.molcel.2010.07.001
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    1. Mevissen, T. E. T.,
    2. Hospenthal, M. K.,
    3. Geurink, P. P.,
    4. Elliott, P. R.,
    5. Akutsu, M.,
    6. Arnaudo, N.,
    7. Ekkebus, R.,
    8. Kulathu, Y.,
    9. Wauer, T.,
    10. El Oualid, F. et al.
    (2013). OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154, 169-184. doi:10.1016/j.cell.2013.05.046
    OpenUrlCrossRefPubMedWeb of Science
  51. ↵
    1. Meyer, H.-J. and
    2. Rape, M.
    (2014). Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910-921. doi:10.1016/j.cell.2014.03.037
    OpenUrlCrossRefPubMed
  52. ↵
    1. Michel, M. A.,
    2. Elliott, P. R.,
    3. Swatek, K. N.,
    4. Simicek, M.,
    5. Pruneda, J. N.,
    6. Wagstaff, J. L.,
    7. Freund, S. M. V. and
    8. Komander, D.
    (2015). Assembly and specific recognition of K29- and K33-linked polyubiquitin. Mol. Cell 58, 95-109. doi:10.1016/j.molcel.2015.01.042
    OpenUrlCrossRefPubMed
  53. ↵
    1. Moniz, S.,
    2. Bandarra, D.,
    3. Biddlestone, J.,
    4. Campbell, K. J.,
    5. Komander, D.,
    6. Bremm, A. and
    7. Rocha, S.
    (2015). Cezanne regulates E2F1-dependent HIF2α expression. J. Cell Sci. 128, 3082-3093. doi:10.1242/jcs.168864
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Morris, J. R. and
    2. Solomon, E.
    (2004). BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum. Mol. Genet. 13, 807-817. doi:10.1093/hmg/ddh095
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Nishikawa, H.,
    2. Ooka, S.,
    3. Sato, K.,
    4. Arima, K.,
    5. Okamoto, J.,
    6. Klevit, R. E.,
    7. Fukuda, M. and
    8. Ohta, T.
    (2004). Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J. Biol. Chem. 279, 3916-3924. doi:10.1074/jbc.M308540200
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Niu, J.,
    2. Shi, Y.,
    3. Xue, J.,
    4. Miao, R.,
    5. Huang, S.,
    6. Wang, T.,
    7. Wu, J.,
    8. Fu, M. and
    9. Wu, Z.-H.
    (2013). USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J. 32, 3206-3219. doi:10.1038/emboj.2013.247
    OpenUrlCrossRefPubMed
  57. ↵
    1. Ohtake, F.,
    2. Saeki, Y.,
    3. Sakamoto, K.,
    4. Ohtake, K.,
    5. Nishikawa, H.,
    6. Tsuchiya, H.,
    7. Ohta, T.,
    8. Tanaka, K. and
    9. Kanno, J.
    (2015). Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep. 16, 192-201. doi:10.15252/embr.201439152
    OpenUrlCrossRefPubMed
  58. ↵
    1. Ordureau, A.,
    2. Sarraf, S. A.,
    3. Duda, D. M.,
    4. Heo, J.-M.,
    5. Jedrychowski, M. P.,
    6. Sviderskiy, V. O.,
    7. Olszewski, J. L.,
    8. Koerber, J. T.,
    9. Xie, T.,
    10. Beausoleil, S. A. et al.
    (2014). Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360-375. doi:10.1016/j.molcel.2014.09.007
    OpenUrlCrossRefPubMed
  59. ↵
    1. Ordureau, A.,
    2. Heo, J.-M.,
    3. Duda, D. M.,
    4. Paulo, J. A.,
    5. Olszewski, J. L.,
    6. Yanishevski, D.,
    7. Rinehart, J.,
    8. Schulman, B. A. and
    9. Harper, J. W.
    (2015a). Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl. Acad. Sci. USA 112, 6637-6642. doi:10.1073/pnas.1506593112
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Ordureau, A.,
    2. Münch, C. and
    3. Harper, J. W.
    (2015b). Quantifying ubiquitin signaling. Mol. Cell 58, 660-676. doi:10.1016/j.molcel.2015.02.020
    OpenUrlCrossRefPubMed
  61. ↵
    1. Rahighi, S.,
    2. Ikeda, F.,
    3. Kawasaki, M.,
    4. Akutsu, M.,
    5. Suzuki, N.,
    6. Kato, R.,
    7. Kensche, T.,
    8. Uejima, T.,
    9. Bloor, S.,
    10. Komander, D. et al.
    (2009). Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136, 1098-1109. doi:10.1016/j.cell.2009.03.007
    OpenUrlCrossRefPubMedWeb of Science
  62. ↵
    1. Rivkin, E.,
    2. Almeida, S. M.,
    3. Ceccarelli, D. F.,
    4. Juang, Y.-C.,
    5. MacLean, T. A.,
    6. Srikumar, T.,
    7. Huang, H.,
    8. Dunham, W. H.,
    9. Fukumura, R.,
    10. Xie, G. et al.
    (2013). The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318-324. doi:10.1038/nature12296
    OpenUrlCrossRefPubMedWeb of Science
  63. ↵
    1. Sarraf, S. A.,
    2. Raman, M.,
    3. Guarani-Pereira, V.,
    4. Sowa, M. E.,
    5. Huttlin, E. L.,
    6. Gygi, S. P. and
    7. Harper, J. W.
    (2014). Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376. doi:10.1038/nature12043
    OpenUrlCrossRef
  64. ↵
    1. Sauvé, V.,
    2. Lilov, A.,
    3. Seirafi, M.,
    4. Vranas, M.,
    5. Rasool, S.,
    6. Kozlov, G.,
    7. Sprules, T.,
    8. Wang, J.,
    9. Trempe, J.-F. and
    10. Gehring, K.
    (2015). A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492-2505. doi:10.15252/embj.201592237
    OpenUrlCrossRefPubMed
  65. ↵
    1. Schaeffer, V.,
    2. Akutsu, M.,
    3. Olma, M. H.,
    4. Gomes, L. C.,
    5. Kawasaki, M. and
    6. Dikic, I.
    (2014). Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol. Cell 54, 349-361. doi:10.1016/j.molcel.2014.03.016
    OpenUrlCrossRefPubMedWeb of Science
  66. ↵
    1. Shimizu, Y.,
    2. Taraborrelli, L. and
    3. Walczak, H.
    (2015). Linear ubiquitination in immunity. Immunol. Rev. 266, 190-207. doi:10.1111/imr.12309
    OpenUrlCrossRefPubMed
  67. ↵
    1. Spence, J.,
    2. Sadis, S.,
    3. Haas, A. L. and
    4. Finley, D.
    (1995). A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265-1273. doi:10.1128/MCB.15.3.1265
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Swaney, D. L.,
    2. Rodríguez-Mias, R. A. and
    3. Villén, J.
    (2015). Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep. 16, 1131-1144. doi:10.15252/embr.201540298
    OpenUrlCrossRefPubMed
  69. ↵
    1. Takiuchi, T.,
    2. Nakagawa, T.,
    3. Tamiya, H.,
    4. Fujita, H.,
    5. Sasaki, Y.,
    6. Saeki, Y.,
    7. Takeda, H.,
    8. Sawasaki, T.,
    9. Buchberger, A.,
    10. Kimura, T. et al.
    (2014). Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 19, 254-272. doi:10.1111/gtc.12128
    OpenUrlCrossRefPubMed
  70. ↵
    1. Tauriello, D. V. F. and
    2. Maurice, M. M.
    (2010). The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle 9, 3700-3709. doi:10.4161/cc.9.18.13204
    OpenUrlCrossRefPubMedWeb of Science
  71. ↵
    1. Tokunaga, F.,
    2. Sakata, S.-i.,
    3. Saeki, Y.,
    4. Satomi, Y.,
    5. Kirisako, T.,
    6. Kamei, K.,
    7. Nakagawa, T.,
    8. Kato, M.,
    9. Murata, S.,
    10. Yamaoka, S. et al.
    (2009). Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11, 123-132. doi:10.1038/ncb1821
    OpenUrlCrossRefPubMedWeb of Science
  72. ↵
    1. Tran, H.,
    2. Hamada, F.,
    3. Schwarz-Romond, T. and
    4. Bienz, M.
    (2008). Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev. 22, 528-542. doi:10.1101/gad.463208
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Valkevich, E. M.,
    2. Sanchez, N. A.,
    3. Ge, Y. and
    4. Strieter, E. R.
    (2014). Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry 53, 4979-4989. doi:10.1021/bi5006305
    OpenUrlCrossRefPubMed
  74. ↵
    1. Virdee, S.,
    2. Ye, Y.,
    3. Nguyen, D. P.,
    4. Komander, D. and
    5. Chin, J. W.
    (2010). Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat. Chem. Biol. 6, 750-757. doi:10.1038/nchembio.426
    OpenUrlCrossRefPubMedWeb of Science
  75. ↵
    1. Wagner, S. A.,
    2. Beli, P.,
    3. Weinert, B. T.,
    4. Nielsen, M. L.,
    5. Cox, J.,
    6. Mann, M. and
    7. Choudhary, C.
    (2011). A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics 10, M111.013284. doi:10.1074/mcp.M111.013284
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Walczak, H.,
    2. Iwai, K. and
    3. Dikic, I.
    (2012). Generation and physiological roles of linear ubiquitin chains. BMC Biol. 10, 23. doi:10.1186/1741-7007-10-23
    OpenUrlCrossRefPubMed
  77. ↵
    1. Wang, Q.,
    2. Liu, X.,
    3. Cui, Y.,
    4. Tang, Y.,
    5. Chen, W.,
    6. Li, S.,
    7. Yu, H.,
    8. Pan, Y. and
    9. Wang, C.
    (2014). The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41, 919-933. doi:10.1016/j.immuni.2014.11.011
    OpenUrlCrossRefPubMed
  78. ↵
    1. Wang, Y.,
    2. Serricchio, M.,
    3. Jauregui, M.,
    4. Shanbhag, R.,
    5. Stoltz, T.,
    6. Di Paolo, C. T.,
    7. Kim, P. K. and
    8. McQuibban, G. A.
    (2015). Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595-606. doi:10.1080/15548627.2015.1034408
    OpenUrlCrossRefPubMed
  79. ↵
    1. Wauer, T.,
    2. Swatek, K. N.,
    3. Wagstaff, J. L.,
    4. Gladkova, C.,
    5. Pruneda, J. N.,
    6. Michel, M. A.,
    7. Gersch, M.,
    8. Johnson, C. M.,
    9. Freund, S. M. and
    10. Komander, D.
    (2015a). Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34, 307-325. doi:10.15252/embj.201489847
    OpenUrlCrossRefPubMed
  80. ↵
    1. Wauer, T.,
    2. Simicek, M.,
    3. Schubert, A. and
    4. Komander, D.
    (2015b). Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370-374. doi:10.1038/nature14879
    OpenUrlCrossRefPubMed
  81. ↵
    1. Wickliffe, K. E.,
    2. Williamson, A.,
    3. Meyer, H.-J.,
    4. Kelly, A. and
    5. Rape, M.
    (2011). K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol. 21, 656-663. doi:10.1016/j.tcb.2011.08.008
    OpenUrlCrossRefPubMed
  82. ↵
    1. Williamson, A.,
    2. Wickliffe, K. E.,
    3. Mellone, B. G.,
    4. Song, L.,
    5. Karpen, G. H. and
    6. Rape, M.
    (2009). Identification of a physiological E2 module for the human anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 106, 18213-18218. doi:10.1073/pnas.0907887106
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Wu, T.,
    2. Merbl, Y.,
    3. Huo, Y.,
    4. Gallop, J. L.,
    5. Tzur, A. and
    6. Kirschner, M. W.
    (2010). UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 107, 1355-1360. doi:10.1073/pnas.0912802107
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Yuan, W.-C.,
    2. Lee, Y.-R.,
    3. Lin, S.-Y.,
    4. Chang, L.-Y.,
    5. Tan, Y. P.,
    6. Hung, C.-C.,
    7. Kuo, J.-C.,
    8. Liu, C.-H.,
    9. Lin, M.-Y.,
    10. Xu, M. et al.
    (2014). K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Mol. Cell 54, 586-600. doi:10.1016/j.molcel.2014.03.035
    OpenUrlCrossRefPubMed
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Ubiquitin
  • Ubiquitin chains
  • Atypical ubiquitin linkages
  • Phospho-ubiquitin

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ubiquitin chain diversity at a glance
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
CELL SCIENCE AT A GLANCE
Ubiquitin chain diversity at a glance
Masato Akutsu, Ivan Dikic, Anja Bremm
Journal of Cell Science 2016 129: 875-880; doi: 10.1242/jcs.183954
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
CELL SCIENCE AT A GLANCE
Ubiquitin chain diversity at a glance
Masato Akutsu, Ivan Dikic, Anja Bremm
Journal of Cell Science 2016 129: 875-880; doi: 10.1242/jcs.183954

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction
    • Structural features of ubiquitin
    • Biology of the ubiquitin code
    • Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Translation initiation in cancer at a glance
  • Tumour-directed microenvironment remodelling at a glance
  • FGF2 and IL-1β – explorers of unconventional secretory pathways at a glance
Show more CELL SCIENCE AT A GLANCE

Similar articles

Subject collections

  • Ubiquitin and Protein Degradation

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992