Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
CELL SCIENCE AT A GLANCE
Actin assembly mechanisms at a glance
Klemens Rottner, Jan Faix, Sven Bogdan, Stefan Linder, Eugen Kerkhoff
Journal of Cell Science 2017 130: 3427-3435; doi: 10.1242/jcs.206433
Klemens Rottner
1Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
2Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan Faix
3Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sven Bogdan
4Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University of Marburg, 35032 Marburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan Linder
5Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eugen Kerkhoff
6Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eugen Kerkhoff
  • For correspondence: Eugen.Kerkhoff@ukr.de
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF
Loading

ABSTRACT

The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.

Introduction

The cellular actin cytoskeleton emerges from the assembly of globular actin (G-actin) into double helical filaments (F-actin) (Fujii et al., 2010; Holmes et al., 1990; Oda et al., 2009). Generation and disassembly of F-actin has to be a very dynamic process in order to fulfil the diversity of actin functions (Blanchoin et al., 2014). The spontaneous polymerization of G-actin into filaments is prevented by the relative instability of the actin dimer or trimer, and by G-actin-binding and sequestering proteins, such as profilin and β-thymosin, respectively (Pantaloni and Carlier, 1993; Sept and McCammon, 2001; Xue and Robinson, 2013). To overcome these kinetic barriers, de novo actin filament polymerization is initiated by actin nucleators or nucleation complexes (Dominguez, 2016; Pollard and Cooper, 2009; Quinlan and Kerkhoff, 2008). Three major classes of actin nucleators have been identified, the Arp2/3 complex, which becomes activated, for example, by nucleation-promoting factors (NPFs) of the Wiskott–Aldrich syndrome protein (WASP)/WASP-family verprolin-homologous protein (WAVE) family; the formins, which assemble into a donut-shaped dimer, where each of the subunits can bind two actin monomers; and finally, the tandem actin-binding domain nucleators, such as Spire, Cobl and leiomodin, which promote actin filament initiation by binding of G-actin to two or more of their WH2 and other actin-binding domains (Ahuja et al., 2007; Chereau et al., 2008; Dominguez, 2016; Fowler and Dominguez, 2017; Machesky and Insall, 1998; Mullins et al., 1998; Otomo et al., 2005b; Pruyne et al., 2002; Quinlan et al., 2005; Sagot et al., 2002). In addition to nucleation, formins also accelerate elongation of the fast-growing (barbed) ends of actin filaments (Otomo et al., 2005a; Romero et al., 2004; Vavylonis et al., 2006), by both attracting profilin-bound G-actin and antagonizing the abrogation of barbed end elongation by capping protein. A similar function has been ascribed to members of the Ena/VASP family of actin filament polymerases, although the latter operate in protein clusters that can utilize actin and profilin–actin complexes for elongation (Breitsprecher et al., 2008; Brühmann et al., 2017; Disanza et al., 2013; Hansen and Mullins, 2015; Winkelman et al., 2014).

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Many structures described here are driven, at least in part, by the activity of specific members of the Rho family of small GTPases, which are now recognized to operate through physical interaction with the aforementioned NPFs or formins (Chen et al., 2010; Lebensohn and Kirschner, 2009; Otomo et al., 2005a; Rohatgi et al., 1999; Rose et al., 2005) (see poster).

In recent years, the concerted action of actin nucleators and nucleation complexes with elongation factors and myosin motor proteins has become apparent. Here, we provide a summary of the composition, function and regulation of such actin-nucleation complexes by focusing on a selection of distinct subcellular structures that have been shown to exert important functions in mammalian cells and to be relevant in human disease.

The regulation of cell edge protrusions: lamellipodia and filopodia

Lamellipodia are major protrusions consisting of networks of actin filaments that are formed by various migrating cells on flat and rigid substrata (Small et al., 2002) (see poster). If they lift upwards and backwards onto the cell, lamellipodia are also called membrane ruffles and considered to harbour actin assembly machineries similar to those formed during micropinocytosis and phagocytosis. Furthermore, certain bacterial pathogens induce comparable, ruffle-like structures leading to their engulfment into non-phagocytic cells, allowing them to infect and spread within tissues and to escape the immune system (see also Box 1).

Box 1. Pathogen-derived nucleators and NPFs
  • A variety of pathogens, both bacteria and viruses, have developed distinct strategies to subvert the actin cytoskeleton of host cells for their own benefit. Listeria monocytogenes is able to move in host cell cytoplasm by generating actin comet tails that allow it to spread from cell to cell, thus enabling it to escape the host immune response. This tail formation requires activation of Arp2/3 by the Listeria surface protein ActA, the first NPF discovered (Welch et al., 1997). In contrast, intracellular Shigella flexneri moves through the cytosol using its IcsA/VirG to recruit the host cell NPF N-WASP (Egile et al., 1999). Vaccinia virus instead induces intracellular actin tail formation below the plasma membrane from the outside, but also usurps N-WASP by indirectly stimulating host cell signalling pathways by mimicking receptor tyrosine kinase signalling (Leite and Way, 2015). Similarly, enterohaemorrhagic and enteropathogenic Escherichia coli ‘surf’ on cell surface structures, so-called pedestals, on which these bacteria reside; both also depend on N-WASP and Arp2/3 complex, although they employ distinct host cell signalling pathways (Campellone, 2010).

  • Strategies for actin nucleation can even switch during the life cycle of the same bacterial species. For instance, invading Rickettsia spp. first use the bacterial protein RickA to activate Arp2/3 to drive the formation of short, flexible comet tails (Gouin et al., 2004), whereas later during infection, they use their bacterial surface protein and formin-mimic Sca2 to generate more rigid actin tails that allow a faster and more persistent motility (Haglund et al., 2010). Recent work on Burkholderia spp. revealed that the mechanism of actin nucleation can even differ between orthologous factors. Distinct Burkholderia species induce actin tails with divergent architectures in the host cytoplasm, depending on whether their orthologous actin inducer BimA has evolved to operate as an Arp2/3 complex activator or an Ena/VASP mimic (Benanti et al., 2015).

  • Finally, VopL and VopF are bacterial tandem WH2-domain-containing actin assembly factors of the Spire type, which support the colonization of infected epithelia by Vibrio parahaemolyticus (Liverman et al., 2007) and Vibrio cholerae (Tam et al., 2007), respectively. Although these proteins bind to both barbed and pointed actin filament ends (Pernier et al., 2013), nucleation was recently found to mostly occur from the pointed end (Burke et al., 2017).

Lamellipodia represent branched actin networks that require the activity of the Arp2/3 complex (Suraneni et al., 2012; Svitkina and Borisy, 1999; Wu et al., 2012), which is activated downstream of the Rac subfamily of small GTPases (Ridley et al., 1992; Steffen et al., 2013). Rac targets the WAVE regulatory complex (WRC) through direct interaction with its Sra-1 (also known as CYFIP1) subunit (Innocenti et al., 2004; Leithner et al., 2016; Steffen et al., 2004) or its isogene PIR121 (CYFIP2), thereby driving Arp2/3 complex activation and lamellipodia formation (Steffen et al., 2014; Stradal and Scita, 2006).

Other crucial factors in lamellipodia include the heterodimeric capping protein (Mejillano et al., 2004), which accumulates close to lamellipodial edges (Iwasa and Mullins, 2007; Lai et al., 2008; Svitkina et al., 2003), and members of the ADF/cofilin family of actin disassembly factors that contribute to protrusion by maintaining cellular actin filament turnover (Hotulainen et al., 2005; Kanellos and Frame, 2016). Note that the maintenance of turnover will be essential for any of the actin structures discussed below, irrespective of the nucleation process employed, albeit to variable extents. Additional regulators include the Arp2/3 complex inhibitor Arpin, which has been implicated in steering Arp2/3-dependent protrusion and migration (Dang et al., 2013), or lamellipodin, an interactor of the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of actin polymerases, which has also been proposed to bridge Rac with the WRC (Krause and Gautreau, 2014; Law et al., 2013). Furthermore, actin turnover is fine-tuned in lamellipodia by the well-known lamellipodial marker cortactin (Lai et al., 2009) or the coronin family proteins, which are thought to regulate the destabilization of Arp2/3-dependent branches (Cai et al., 2008).

Finally, lamellipodial actin generation is boosted downstream of Cdc42 by the formins FMNL2 and FMNL3 (Block et al., 2012), which produce subpopulations of actin filaments that are independent of the Arp2/3 complex and crucial for mechanical stability and lamellipodial force development (Kage et al., 2017). As also shown in the latter study, the rate of network actin polymerization in lamellipodia can be uncoupled from protrusion efficiency, and Arp2/3-dependent actin branching alone is not sufficient to generate mechanically rigid lamellipodial actin networks (Kage et al., 2017). Notably, lamellipodial actin assembly rates are controlled by the number of available actin monomers rather than the actin polymerases positioned at their tips (Dimchev et al., 2017).

Filopodia, also termed microspikes if they are mostly embedded into the lamellipodium, are dynamic, finger-like cell surface protrusions found in most cell types (Mattila and Lappalainen, 2008; Small et al., 2002) (see poster). Filopodia have been implicated in navigation of neuronal growth cones, the fusion of epithelial sheets during morphogenesis (Millard and Martin, 2008; Viveiros et al., 2011) and also in promoting 3D migration and cancer cell invasion (Jacquemet et al., 2015). Canonical filopodia are usually a few micrometres wide and no more than 10 µm in length (Mellor, 2010), and comprise a few dozen parallel actin filaments that are compacted into dense bundles by cross-linkers, such as fascin and Daam1 (Hoffmann et al., 2014; Jaiswal et al., 2013; Vignjevic et al., 2006), although genetic data are lacking that would allow functional dissection of the role of fascin family members relative to other cross-linkers (Hashimoto et al., 2011; Yamakita et al., 2009). Additionally, filopodia can accumulate VASP (Svitkina et al., 2003), myosin-X (Bohil et al., 2006) and inverse Bin–amphiphysin–Rvs (IBAR) proteins such as the insulin receptor tyrosine kinase substrate p53 (IRSp53; also known as BAIAP2) at their distal tips, which are all thought to contribute to filopodial actin filament assembly, although a clear molecular understanding of their respective functions at these sites remains elusive (Mattila and Lappalainen, 2008). In general, filopodia are thought to grow by actin incorporation at their tips, and to shrink either by rearward pulling of filaments into the cell body followed by their depolymerization (Mallavarapu and Mitchison, 1999), and/or by cofilin-mediated actin filament disassembly initiated in tip regions or along their shafts (Breitsprecher et al., 2011).

Two major mechanisms employing distinct actin nucleators have been proposed to drive the formation of these structures (Faix et al., 2009; Faix and Rottner, 2006; Mattila and Lappalainen, 2008; Yang and Svitkina, 2011). In the ‘convergent elongation’ model, filopodial actin filaments arise from the dendritic network of Arp2/3 complex-nucleated filaments by selective elongation, coalescence and bundling (Korobova and Svitkina, 2008; Svitkina et al., 2003), whereas the ‘de novo nucleation’ model predicts that filopodial actin filaments are nucleated from scratch by mammalian Diaphanous-related formin mDia2 (also known as DIAPH3; Block et al., 2008) or the formin-like proteins FMNL2 and FMNL3 (Gauvin et al., 2015; Kage et al., 2017; Kühn et al., 2015) downstream of Rho-family GTPase signalling. Indeed, filopodia can form in the absence of Arp2/3 complex and/or its activators in different cell types, as well as in cells that lack any lamellipodia (Gomez et al., 2007; Nicholson-Dykstra and Higgs, 2008; Sarmiento et al., 2008; Steffen et al., 2006, 2013; Wu et al., 2012). The de novo nucleation model is further supported by the reduction of filopodia observed in Dictyostelium cells after genetic knockout of dDia2 (Schirenbeck et al., 2005), or after silencing of FMNL3 in mammalian cells (Gauvin et al., 2015). Extensions and/or amendments of both competing models have recently been described (Young et al., 2015). Notwithstanding this, future efforts are needed to unambiguously identify those nucleators and pathways that are obligatory for filopodia formation in mammals; this is currently lacking.

Invadosomes

Invadopodia and podosomes, collectively termed invadosomes, are adhesion and invasion structures that establish contact with the extracellular matrix through integrins (Pfaff and Jurdic, 2001; Teti et al., 1989) and CD44 (Chabadel et al., 2007), and recruit metalloproteases to degrade the extracellular matrix (Linder, 2007) (see poster). Podosomes reflect the physiological aspect of these structures and are formed in untransformed cells, including macrophages (Linder et al., 1999), dendritic cells (Burns et al., 2001), osteoclasts (Destaing et al., 2003), endothelial cells (Moreau et al., 2003) or neural crest cells (Murphy et al., 2011), whereas invadopodia are found in cancer cells, such as carcinoma (Lorenz et al., 2004) or melanoma cells (Monsky et al., 1993).

Podosomes consist of a core of branched actin filaments, which depends on WASP-mediated activation of the Arp2/3 complex (Linder et al., 2000, 1999), and is surrounded by a ring of integrins and adhesion-plaque proteins, such as talin or vinculin (Linder et al., 2000; Zambonin-Zallone et al., 1989) (Box 2), whereas a cap structure on top of the core contains the formins INF2 (Panzer et al., 2016) and FMNL1 (Mersich et al., 2010), and organizes lateral unbranched filaments that are anchored at the ring (Akisaka et al., 2008); this enables podosomes to function as mechanosensors (Linder and Wiesner, 2016; van den Dries et al., 2013). A second set of unbranched actin filaments, regulated by the formin FHOD1 (Panzer et al., 2016), connects podosomes into higher-ordered groups (Luxenburg et al., 2007). Both sets of unbranched filaments contain myosin-IIA and are contractile (Bhuwania et al., 2012; van den Dries et al., 2013). Considering their biochemical activities, INF2 could function in both actin polymerization and depolymerization (Chhabra and Higgs, 2006), whereas FHOD1 likely bundles podosome-connecting filaments (Schönichen et al., 2013). FMNL1 regulates the stability of podosomes (Mersich et al., 2010), which could involve multiple activities, such as actin nucleation, elongation, bundling or severing (Harris et al., 2004, 2006).

Box 2. Actin assembly factors and genetic disorders
  • The pivotal role of actin structures in cell biological processes is reflected by deregulated actin functions, which frequently cause human diseases. A number of inherited diseases are directly linked to mutations in genes encoding actin regulators. Mutations in WASP, an activator of the Arp2/3 complex (Machesky and Insall, 1998) expressed in the hematopoietic lineage, are linked to Wiskott–Aldrich syndrome, which manifests in immune and blood clotting insufficiencies, as well as leukaemia (Derry et al., 1994). Loss of podosome formation in megakaryocytes may contribute to the reduced count of platelets in patients with Wiskott–Aldrich syndrome (Poulter et al., 2015; Schachtner et al., 2013), whereas loss of podosomes in immune cells, such as macrophages (Linder et al., 1999) and dendritic cells (Burns et al., 2001), could contribute to the observed defects in directional immune cell migration (Bouma et al., 2009). Mutations in the WASH complex subunit strumpellin cause autosomal dominant hereditary spastic paraplegia (HSP), a neurodegenerative disorder characterized by a progressive stiffness and contraction in the lower limbs (Jia et al., 2010; Valdmanis et al., 2007).

  • Inherited diseases have also been described for several members of the formin family. Autosomal dominant nonsyndromic auditory neuropathy, for instance, has been linked to a mutation in the 5′ untranslated region of the human DIAPH3 gene, and results in an increased expression of the formin (Schoen et al., 2010). Transgenic mouse models overexpressing Diaph3, revealed that inner hair cells of the ear develop elongated stereocilia and fuse with neighbouring ones, coinciding with increasing hearing loss (Schoen et al., 2013). Moreover, homozygous loss of the related formin DIAPH1 has recently been identified to cause microcephaly in humans (Ercan-Sencicek et al., 2015).

  • Mutations in two other formin family members, INF2 and FMN2, were found to cause severe human disorders (Boyer et al., 2011; Law et al., 2014). INF2 mutations are associated with the focal segmental glomerulosclerosis and with the Charcot–Marie–Tooth neurodegenerative disorder, a subtype of muscular dystrophy (Boyer et al., 2011), whereas homozygous mutations of FMN2 cause nonsyndromic intellectual disability (Law et al., 2014). Interestingly, the functions of INF2 and FMN2 converge on the tandem WH2-domain-nucleator Spire, which cooperates with INF2 at mitochondria-ER contact sites and with FMN2 at Rab11-enriched vesicle membranes (Manor et al., 2015; Pfender et al., 2011; Schuh, 2011).

Invadopodia form and mature in several steps, starting with an actin network that depends on N-WASP and the Arp2/3 complex (Gligorijevic et al., 2012; Yamaguchi et al., 2005) (see poster). This network is subsequently anchored at the plasma membrane by a ring structure of integrins and adhesion plaque proteins, which is also important for further growth (Branch et al., 2012), but often not detected in mature structures. It is unknown whether this ring structure is connected to the invadopodium core through contractile actomyosin fibres, in analogy to podosomes. Further protrusive growth of invadopodia requires both the Arp2/3 complex and formins (Schoumacher et al., 2010), as demonstrated for the Diaphanous-related formins DIAPH1–DIAPH3 (DRF1-DRF3) in breast cancer cells (Lizarraga et al., 2009), mDia2 (DIAPH3) in colon cancer (Schoumacher et al., 2010) and FHOD1 in squamous carcinoma cells (Gardberg et al., 2013). Diaphanous-related formins probably regulate nucleation and growth (Li and Higgs, 2003) of unbranched actin filaments along the shaft and tips of invadopodia as visualized by ultrastructural analysis (Schoumacher et al., 2010), with capping and bundling likely to be supported by FHOD1 (Schönichen et al., 2013). The pronounced protrusion of invadopodia, as opposed to the non-protrusive nature of podosomes, probably also underlies the respective differences in their lifetime, which can be over 60 minutes for invadopodia (Yamaguchi et al., 2005) compared with only several minutes for podosomes (Destaing et al., 2003).

Cell cortex

The contractile actin cortex of eukaryotic cells is a thin layer of about 100 nm that contains actin filaments cross-linked by specialized actin- and lipid-binding proteins of the ezrin–radixin–moesin (ERM) family (see poster). The cortex also contains myosin-II, which generates forces within this network beneath the plasma membrane (Salbreux et al., 2012; Sens and Plastino, 2015). The dynamic turnover of cortical actin enables cells to adapt and resist to extracellular stress, to perform mechanical work and quickly respond to external stimuli, as well as to drive cell shape changes. The tension generated by assembly and contraction of this layer plays a central role in various processes, including cell migration (Charras and Paluch, 2008), division (Stewart et al., 2011) or tissue morphogenesis (Munjal and Lecuit, 2014). Recent work using mitotic HeLa cells revealed that, in addition to Arp2/3 complex, mDia1 (DIAPH1) has a major role in nucleating cortical actin (Bovellan et al., 2014) (see poster). In mammalian amoeboid cells such as dendritic cells, but also in Dictyostelium, mDia1 and the mDia1-like formin ForA, respectively, are crucial when these cells migrate through mechanically confined environments (Ramalingam et al., 2015; Vargas et al., 2016). Loss of ForA in Dictyostelium cells causes failure to withstand hydrostatic pressure in confined environments, leading to ectopic blebbing at the rear and inefficient migration (Ramalingam et al., 2015). The fact that active mDia1 can also accumulate in the rear of migrating B16-F1 melanoma cells suggests evolutionarily conserved roles of cortical formins in contractility-assisted migration. However, the proposed role of mDia1 as a positive regulator of lamellipodial protrusion, through nucleation of mother filaments for subsequent branching by Arp2/3 complex (Isogai et al., 2015), appears incompatible with its strong accumulation in the rear (Ramalingam et al., 2015; Vargas et al., 2016) and with the observed antagonism between blebbing and lamellipodium formation (Bergert et al., 2012).

Stress fibres and contractile ring

The rate of assembly and turnover of actin filaments in stress fibres is much lower compared with levels in protrusions (Campbell and Knight, 2007; Lai et al., 2008), pointing to differences in regulation. The canonical type of stress fibre upon which we focus here has previously been referred to as a ventral stress fibre, which commonly terminates in so-called focal adhesions: cell–substratum contacts enriched for integrin transmembrane receptors connecting the extracellular matrix with the actin cytoskeleton inside through dozens of proteins, including vinculin and talin (Hotulainen and Lappalainen, 2006; Livne and Geiger, 2016) (see poster). Interestingly, actin filaments within such stress fibres and the contractile ring show a non-uniform polarity and are regulated by Rho-induced myosin-II-based contractility mostly mediated by Rho-associated kinase (ROCK) (Pellegrin and Mellor, 2007; Rottner and Stradal, 2011; Skau and Waterman, 2015). Regarding the generation of actin filaments in the contractile ring or in stress fibres and focal adhesions, there is little evidence for a prominent role of Arp2/3 complex in formation and turnover of these structures, except for vinculin–Arp2/3 hybrid complexes (Chorev et al., 2014). However, canonical Arp2/3 complex is not present in stress fibres and adhesions, and respective phenotypes are thus lacking in RNAi-depleted or genetic knockout cells (Suraneni et al., 2012; Wu et al., 2012). In contrast, formins have been implicated in filament nucleation in stress fibres and adhesions, and mDia1 was initially identified as a RhoA target, with the caveat of a lack of clear accumulation in RhoA-dependent structures (Watanabe et al., 1999). Subsequently, additional formins were described as operating in stress fibre and/or focal adhesion formation, including mammalian FHOD proteins (Schulze et al., 2014) and their Drosophila homologue Knittrig (Lammel et al., 2014), as well as, most recently, INF2, which stands out from the others by its clear accumulation in focal adhesions (Skau et al., 2015) (see poster).

Nevertheless, much remains to be learned regarding the regulation of actin assembly in stress fibres, focal adhesions or the mammalian contractile ring (Burridge and Guilluy, 2016; Skau and Waterman, 2015), and fundamental outstanding questions include determination of the obligatory factors and pathways for the formation and turnover of these different contractile arrays, the regulation of length and number of individual actin filaments contributing to these structures, as well as the coordination of their assembly and disassembly during contraction or constriction (Livne and Geiger, 2016; Pollard, 2014).

Actin assembly in intracellular membrane organization and dynamics

The actin cytoskeleton is not only essential for cell shape change and cell edge protrusion, but is also important for the organization and dynamics of endosomal vesicles and organelles (see poster). Actin filament formation at intracellular membranes provides the mechanical forces to drive intracellular processes, such as endocytosis, endosome sorting and recycling, exocytosis and autophagy (Gautreau et al., 2014). A key actin nucleator with roles in vesicle dynamics is the Arp2/3 complex, which is activated by different members of the WASP family of nucleation-promoting factors, such as N-WASP or WASH (depending on the specific intracellular membrane compartment) (Brüser and Bogdan, 2017; Galletta and Cooper, 2009; Gautreau et al., 2014; Girao et al., 2008; Rottner et al., 2010). N-WASP forms a stable complex with WIP/WIRE proteins that protect it from degradation (de la Fuente et al., 2007; Stewart et al., 1999). Once N-WASP is recruited to sites of endocytosis and activated by Cdc42 and its effector, the F-BAR protein Cip4/Toca, it activates the Arp2/3 complex, facilitating membrane invagination of endocytic vesicles and/or promoting movement by actin comet tail formation (Benesch et al., 2002, 2005; Fricke et al., 2009; Ho et al., 2004; Takano et al., 2008) (see poster). Recruitment of myosin-Ie coincides with a burst of actin assembly at sites of clathrin-mediated endocytosis, suggesting that the mammalian class I myosins function in the regulation of actin-driven endocytosis (Cheng et al., 2012) (see poster).

In contrast to N-WASP, WASH associates into a heteroheptameric complex known as the WASH regulatory complex (SHRC) together with strumpellin, FAM21, SWIP, CCDC53 and heterodimeric capping protein (CapZ) (Derivery et al., 2009; Gomez and Billadeau, 2009; Jia et al., 2010) (see Box 2). The SHRC localizes to F-actin-enriched microdomains at the surface of different endosomal compartments, including early endosomes, late endosomes and lysosomes (see poster). Accordingly, loss of WASH function results in diverse trafficking defects in different endocytic routes, including endosome-to-Golgi transport via the retromer complex (Gomez and Billadeau, 2009; Harbour et al., 2012; Kvainickas et al., 2017; Piotrowski et al., 2013; Zech et al., 2011) and endosome-to-plasma membrane recycling of various cargos (Derivery et al., 2009; Nagel et al., 2017; Zech et al., 2011). Endosomal sorting defects in WASH-deficient cells are accompanied by a loss of branched actin networks at the surface of endosomes and an increased formation of endosomal tubular membranes (Gomez and Billadeau, 2009; Piotrowski et al., 2013). The exact role of WASH-dependent actin patches on endosomes, however, is not yet clear. WASH-mediated, branched actin filaments might physically stabilize the tubular neck of budding sorting endosomes and provide additional forces to push against any tension exerted by the membrane, thereby facilitating endosomal fission in a fashion analogous to the role of WASP in endocytic vesicle fission (Fricke et al., 2010, 2009). Branched actin networks might also stabilize distinct endosomal tubules, thereby allowing for cargos to diffuse into these vesicles before pinching off (Puthenveedu et al., 2010). Alternatively, actin-stabilized microdomains could function as platforms that not only cluster cargo, but also localize signalling factors, including lipids or proteins, to mediate efficient endosomal scission (Dong et al., 2016).

At lysosomes, WASH-dependent actin polymerization directly drives the removal of vacuolar H+-ATPase (V-ATPase) and its recycling into small vesicles, which allows the lysosome to become neutralized (see poster). Accordingly, loss of WASH function in both Dictyostelium and Drosophila results in strong defects in lysosome and phagosome neutralization (Carnell et al., 2011; King et al., 2013; Nagel et al., 2017). Furthermore, increased autolysosomal acidification upon starvation appears to promote autophagy in wash mutant flies and significantly reduces their life span. A dramatic induction of autophagy might also be causative for embryonic lethality of WASH-knockout mice (Xia et al., 2013). In contrast to flies, mammalian WASH appears to directly inhibit autophagosome formation, a role appearing independent of its function as Arp2/3 complex activator (Xia et al., 2014).

Roles in autophagosome formation have also been identified for two related WASP protein family members, the vertebrate proteins WHAMM and JMY (Coutts and La Thangue, 2015; Kast et al., 2015), as discussed in detail in a recent review (Alekhina et al., 2017). In contrast to mammalian WASH, WHAMM promotes autophagosome formation and motility (Kast et al., 2015) (see poster). Consistently, overexpression of WHAMM increases size and number of autophagosomes formed at the ER, whereas its suppression reduces both autophagosome size and number, as well as that of actin comet tails on ER membranes (Kast et al., 2015). Thus, a model has been proposed, in which WHAMM-dependent branched actin network formation by the Arp2/3 complex promotes the biogenesis and motility of autophagosomes from the ER membrane (Kast et al., 2015).

An important role in early autophagosome biogenesis and motility has also been described for JMY, a WHAMM-related protein that also accumulates at LC3-positive ER sites where autophagosomes form and at the trans-Golgi network (Coutts and La Thangue, 2015; Schlüter et al., 2014). It is currently unclear whether JMY and WHAMM co-operate or serve differential, perhaps consecutive functions in the autophagosome biogenesis pathway.

Apart from Arp2/3 complex and its activators, members of the Spire protein family also have crucial roles in intracellular membrane organization and transport (Dietrich et al., 2013; Kerkhoff, 2011; Kerkhoff et al., 2001) (see poster). Spire proteins contain a FYVE-type membrane-binding domain, which targets them to negatively-charged endosomal membranes (Pylypenko et al., 2016; Tittel et al., 2015). In metaphase mouse oocytes, Spire proteins, in cooperation with formin-2 (FMN2), nucleate actin filaments at Rab11-marked vesicles, which serve as tracks for myosin-V-mediated long-range transport towards the oocyte cortex (Pfender et al., 2011; Schuh, 2011) (see Box 2) (Pylypenko et al., 2016). The direct interactions of myosin-V with Spire and Rab11 specify the membrane of Rab11-containing vesicles for Spire function (Pylypenko et al., 2016). As a result of alternative splicing, the Spire1 protein (Spire1C) can also be targeted to the outer membranes of mitochondria (Manor et al., 2015). In cooperation with the ER-anchored isoform of inverted formin-2 (INF2), Spire proteins assemble actin filaments at ER–mitochondria intersections. Based on this knowledge, a model has been proposed, in which polymerized actin filaments along these zones provide the forces required for inducing mitochondrial constriction and subsequent division (Manor et al., 2015) (see also Box 2).

Conclusions

Tuning of nucleation and turnover of actin filaments is no doubt instrumental in ensuring specificity and appropriate functioning of a given actin filament structure in vivo. The mechanisms of formation of the selected actin structures presented here clearly illustrate two points: (1) the unexpected diversity of factors that co-operate in assembly of individual structures, and (2) the multitude of actin regulators that display crucial functions in more than one structure or process. The Arp2/3 complex certainly represents an extreme case with regard to multi-functionality, but the specific functions of its activators and other actin assembly factors are also emerging as increasingly diverse. All this suggests that we continue to underestimate the connections between seemingly distinct processes, and instead prefer simplified, isolated views over delving into their complexity. Therefore, the challenge for the future will be to develop more universally applicable models of actin-based motile processes in vivo that also include more indirect connections between seemingly independent structures, and thus move beyond the sole characterization of isolated processes.

Acknowledgements

Research on actin assembly mechanisms has been generously funded by the Deutsche Forschungsgemeinschaft (DFG) from 2010 to 2017 within the priority programme SPP1464 “Principles and evolution of actin nucleator complexes”, which also included support for international conferences and training courses. The close cooperation within the priority programme, as well as within the wider international community of actin researchers very much inspired and promoted our research. We would like to thank all our colleagues for precious contributions and fruitful scientific discussions. We further thank Tobias Welz for his help in image design.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Funding

    Work in the authors’ labs is funded by Deutsche Forschungsgemeinschaft grants RO2414/3-2 and RO2414/5-1 to K.R.; FA330/6-2 and FA330/10-1 to J.F.; BO1890/3-2 and BO1890/4-1, cluster of excellence “Cells in Motion” (CIM) to S.B.; LI 925/2-2 and LI 925/8-1 to S.L.; KE 447/10 and KE 447/11 to E.K.

  • Cell science at a glance

    A high-resolution version of the poster and individual poster panels are available for downloading at http://jcs.biologists.org/lookup/doi/10.1242/jcs.206433.supplemental

  • © 2017. Published by The Company of Biologists Ltd

References

  1. ↵
    1. Ahuja, R.,
    2. Pinyol, R.,
    3. Reichenbach, N.,
    4. Custer, L.,
    5. Klingensmith, J.,
    6. Kessels, M. M. and
    7. Qualmann, B.
    (2007). Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131, 337-350. doi:10.1016/j.cell.2007.08.030
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Akisaka, T.,
    2. Yoshida, H.,
    3. Suzuki, R. and
    4. Takama, K.
    (2008). Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Cell Tissue Res. 331, 625-641. doi:10.1007/s00441-007-0552-x
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Alekhina, O.,
    2. Burstein, E. and
    3. Billadeau, D. D.
    (2017). Cellular functions of WASP family proteins at a glance. J. Cell Sci. 130, 2235-2241. doi:10.1242/jcs.199570
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Benanti, E. L.,
    2. Nguyen, C. M. and
    3. Welch, M. D.
    (2015). Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 161, 348-360. doi:10.1016/j.cell.2015.02.044
    OpenUrlCrossRefPubMed
  5. ↵
    1. Benesch, S.,
    2. Lommel, S.,
    3. Steffen, A.,
    4. Stradal, T. E. B.,
    5. Scaplehorn, N.,
    6. Way, M.,
    7. Wehland, J. and
    8. Rottner, K.
    (2002). Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J. Biol. Chem. 277, 37771-37776. doi:10.1074/jbc.M204145200
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Benesch, S.,
    2. Polo, S.,
    3. Lai, F. P. L.,
    4. Anderson, K. I.,
    5. Stradal, T. E. B.,
    6. Wehland, J. and
    7. Rottner, K.
    (2005). N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J. Cell Sci. 118, 3103-3115. doi:10.1242/jcs.02444
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Bergert, M.,
    2. Chandradoss, S. D.,
    3. Desai, R. A. and
    4. Paluch, E.
    (2012). Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl. Acad. Sci. USA 109, 14434-14439. doi:10.1073/pnas.1207968109
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Bhuwania, R.,
    2. Cornfine, S.,
    3. Fang, Z.,
    4. Kruger, M.,
    5. Luna, E. J. and
    6. Linder, S.
    (2012). Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J. Cell Sci. 125, 2300-2314. doi:10.1242/jcs.100032
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Blanchoin, L.,
    2. Boujemaa-Paterski, R.,
    3. Sykes, C. and
    4. Plastino, J.
    (2014). Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235-263. doi:10.1152/physrev.00018.2013
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Block, J.,
    2. Stradal, T. E. B.,
    3. Hänisch, J.,
    4. Geffers, R.,
    5. Köstler, S. A.,
    6. Urban, E.,
    7. Small, J. V.,
    8. Rottner, K. and
    9. Faix, J.
    (2008). Filopodia formation induced by active mDia2/Drf3. J. Microsc. 231, 506-517. doi:10.1111/j.1365-2818.2008.02063.x
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    1. Block, J.,
    2. Breitsprecher, D.,
    3. Kühn, S.,
    4. Winterhoff, M.,
    5. Kage, F.,
    6. Geffers, R.,
    7. Duwe, P.,
    8. Rohn, J. L.,
    9. Baum, B.,
    10. Brakebusch, C. et al.
    (2012). FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr. Biol. 22, 1005-1012. doi:10.1016/j.cub.2012.03.064
    OpenUrlCrossRefPubMed
  12. ↵
    1. Bohil, A. B.,
    2. Robertson, B. W. and
    3. Cheney, R. E.
    (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proc. Natl. Acad. Sci. USA 103, 12411-12416. doi:10.1073/pnas.0602443103
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Bouma, G.,
    2. Burns, S. O. and
    3. Thrasher, A. J.
    (2009). Wiskott-Aldrich Syndrome: Immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology 214, 778-790. doi:10.1016/j.imbio.2009.06.009
    OpenUrlCrossRefPubMed
  14. ↵
    1. Bovellan, M.,
    2. Romeo, Y.,
    3. Biro, M.,
    4. Boden, A.,
    5. Chugh, P.,
    6. Yonis, A.,
    7. Vaghela, M.,
    8. Fritzsche, M.,
    9. Moulding, D.,
    10. Thorogate, R. et al.
    (2014). Cellular control of cortical actin nucleation. Curr. Biol. 24, 1628-1635. doi:10.1016/j.cub.2014.05.069
    OpenUrlCrossRefPubMed
  15. ↵
    1. Boyer, O.,
    2. Nevo, F.,
    3. Plaisier, E.,
    4. Funalot, B.,
    5. Gribouval, O.,
    6. Benoit, G.,
    7. Cong, E. H.,
    8. Arrondel, C.,
    9. Tête, M.-J.,
    10. Montjean, R. et al.
    (2011). INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377-2388. doi:10.1056/NEJMoa1109122
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Branch, K. M.,
    2. Hoshino, D. and
    3. Weaver, A. M.
    (2012). Adhesion rings surround invadopodia and promote maturation. Biol. Open 1, 711-722. doi:10.1242/bio.20121867
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Breitsprecher, D.,
    2. Kiesewetter, A. K.,
    3. Linkner, J.,
    4. Urbanke, C.,
    5. Resch, G. P.,
    6. Small, J. V. and
    7. Faix, J.
    (2008). Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943-2954. doi:10.1038/emboj.2008.211
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Breitsprecher, D.,
    2. Koestler, S. A.,
    3. Chizhov, I.,
    4. Nemethova, M.,
    5. Mueller, J.,
    6. Goode, B. L.,
    7. Small, J. V.,
    8. Rottner, K. and
    9. Faix, J.
    (2011). Cofilin cooperates with fascin to disassemble filopodial actin filaments. J. Cell Sci. 124, 3305-3318. doi:10.1242/jcs.086934
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Brühmann, S.,
    2. Ushakov, D. S.,
    3. Winterhoff, M.,
    4. Dickinson, R. B.,
    5. Curth, U. and
    6. Faix, J.
    (2017). Distinct VASP tetramers synergize in the processive elongation of individual actin filaments from clustered arrays. Proc. Natl. Acad. Sci. USA 114, E5815-E5824. doi:10.1073/pnas.1703145114
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Brüser, L. and
    2. Bogdan, S.
    (2017). Molecular control of actin dynamics in vivo: insights from Drosophila. Handb. Exp. Pharmacol. 235, 285-310. doi:10.1007/164_2016_33
    OpenUrlCrossRef
  21. ↵
    1. Burke, T. A.,
    2. Harker, A. J.,
    3. Dominguez, R. and
    4. Kovar, D. R.
    (2017). The bacterial virulence factors VopL and VopF nucleate actin from the pointed end. J. Cell Biol. 216, 1267-1276. doi:10.1083/jcb.201608104
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Burns, S.,
    2. Thrasher, A. J.,
    3. Blundell, M. P.,
    4. Machesky, L. and
    5. Jones, G. E.
    (2001). Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98, 1142-1149. doi:10.1182/blood.V98.4.1142
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Burridge, K. and
    2. Guilluy, C.
    (2016). Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14-20. doi:10.1016/j.yexcr.2015.10.029
    OpenUrlCrossRef
  24. ↵
    1. Cai, L.,
    2. Makhov, A. M.,
    3. Schafer, D. A. and
    4. Bear, J. E.
    (2008). Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828-842. doi:10.1016/j.cell.2008.06.054
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Campbell, J. J. and
    2. Knight, M. M.
    (2007). An improved confocal FRAP technique for the measurement of long-term actin dynamics in individual stress fibers. Microsc. Res. Tech. 70, 1034-1040. doi:10.1002/jemt.20513
    OpenUrlCrossRefPubMed
  26. ↵
    1. Campellone, K. G.
    (2010). Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J. 277, 2390-2402. doi:10.1111/j.1742-4658.2010.07653.x
    OpenUrlCrossRefPubMed
  27. ↵
    1. Carnell, M.,
    2. Zech, T.,
    3. Calaminus, S. D.,
    4. Ura, S.,
    5. Hagedorn, M.,
    6. Johnston, S. A.,
    7. May, R. C.,
    8. Soldati, T.,
    9. Machesky, L. M. and
    10. Insall, R. H.
    (2011). Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. J. Cell Biol. 193, 831-839. doi:10.1083/jcb.201009119
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Chabadel, A.,
    2. Banon-Rodriguez, I.,
    3. Cluet, D.,
    4. Rudkin, B. B.,
    5. Wehrle-Haller, B.,
    6. Genot, E.,
    7. Jurdic, P.,
    8. Anton, I. M. and
    9. Saltel, F.
    (2007). CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts. Mol. Biol. Cell 18, 4899-4910. doi:10.1091/mbc.E07-04-0378
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Charras, G. and
    2. Paluch, E.
    (2008). Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730-736. doi:10.1038/nrm2453
    OpenUrlCrossRefPubMedWeb of Science
  30. ↵
    1. Chen, Z.,
    2. Borek, D.,
    3. Padrick, S. B.,
    4. Gomez, T. S.,
    5. Metlagel, Z.,
    6. Ismail, A. M.,
    7. Umetani, J.,
    8. Billadeau, D. D.,
    9. Otwinowski, Z. and
    10. Rosen, M. K.
    (2010). Structure and control of the actin regulatory WAVE complex. Nature 468, 533-538. doi:10.1038/nature09623
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Cheng, J.,
    2. Grassart, A. and
    3. Drubin, D. G.
    (2012). Myosin 1E coordinates actin assembly and cargo trafficking during clathrin-mediated endocytosis. Mol. Biol. Cell 23, 2891-2904. doi:10.1091/mbc.E11-04-0383
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Chereau, D.,
    2. Boczkowska, M.,
    3. Skwarek-Maruszewska, A.,
    4. Fujiwara, I.,
    5. Hayes, D. B.,
    6. Rebowski, G.,
    7. Lappalainen, P.,
    8. Pollard, T. D. and
    9. Dominguez, R.
    (2008). Leiomodin is an actin filament nucleator in muscle cells. Science 320, 239-243. doi:10.1126/science.1155313
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Chhabra, E. S. and
    2. Higgs, H. N.
    (2006). INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J. Biol. Chem. 281, 26754-26767. doi:10.1074/jbc.M604666200
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Chorev, D. S.,
    2. Moscovitz, O.,
    3. Geiger, B. and
    4. Sharon, M.
    (2014). Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex. Nat. Commun. 5, 3758. doi:10.1038/ncomms4758
    OpenUrlCrossRefPubMed
  35. ↵
    1. Coutts, A. S. and
    2. La Thangue, N. B.
    (2015). Actin nucleation by WH2 domains at the autophagosome. Nat. Commun. 6, 7888. doi:10.1038/ncomms8888
    OpenUrlCrossRefPubMed
  36. ↵
    1. Dang, I.,
    2. Gorelik, R.,
    3. Sousa-Blin, C.,
    4. Derivery, E.,
    5. Guerin, C.,
    6. Linkner, J.,
    7. Nemethova, M.,
    8. Dumortier, J. G.,
    9. Giger, F. A.,
    10. Chipysheva, T. A. et al.
    (2013). Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 503, 281-284. doi:10.1038/nature12611
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. de la Fuente, M. A.,
    2. Sasahara, Y.,
    3. Calamito, M.,
    4. Antón, I. M.,
    5. Elkhal, A.,
    6. Gallego, M. D.,
    7. Suresh, K.,
    8. Siminovitch, K.,
    9. Ochs, H. D.,
    10. Anderson, K. C. et al.
    (2007). WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP). Proc. Natl. Acad. Sci. USA 104, 926-931. doi:10.1073/pnas.0610275104
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Derivery, E.,
    2. Sousa, C.,
    3. Gautier, J. J.,
    4. Lombard, B.,
    5. Loew, D. and
    6. Gautreau, A.
    (2009). The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 17, 712-723. doi:10.1016/j.devcel.2009.09.010
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. Derry, J. M. J.,
    2. Ochs, H. D. and
    3. Francke, U.
    (1994). Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 78, 635-644. doi:10.1016/0092-8674(94)90528-2
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    1. Destaing, O.,
    2. Saltel, F.,
    3. Geminard, J.-C.,
    4. Jurdic, P. and
    5. Bard, F.
    (2003). Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol. Biol. Cell 14, 407-416. doi:10.1091/mbc.E02-07-0389
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Dietrich, S.,
    2. Weiss, S.,
    3. Pleiser, S. and
    4. Kerkhoff, E.
    (2013). Structural and functional insights into the Spir/formin actin nucleator complex. Biol. Chem. 394, 1649-1660. doi:10.1515/hsz-2013-0176
    OpenUrlCrossRefPubMed
  42. ↵
    1. Dimchev, G.,
    2. Steffen, A.,
    3. Kage, F.,
    4. Dimchev, V.,
    5. Pernier, J.,
    6. Carlier, M.-F. and
    7. Rottner, K.
    (2017). Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly. Mol. Biol. Cell 28, 1311-1325. doi:10.1091/mbc.E16-05-0334
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Disanza, A.,
    2. Bisi, S.,
    3. Winterhoff, M.,
    4. Milanesi, F.,
    5. Ushakov, D. S.,
    6. Kast, D.,
    7. Marighetti, P.,
    8. Romet-Lemonne, G.,
    9. Müller, H.-M.,
    10. Nickel, W. et al.
    (2013). CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J. 32, 2735-2750. doi:10.1038/emboj.2013.208
    OpenUrlCrossRefPubMed
  44. ↵
    1. Dominguez, R.
    (2016). The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem. Sci. 41, 478-490. doi:10.1016/j.tibs.2016.03.004
    OpenUrlCrossRefPubMed
  45. ↵
    1. Dong, R.,
    2. Saheki, Y.,
    3. Swarup, S.,
    4. Lucast, L.,
    5. Harper, J. W. and
    6. De Camilli, P.
    (2016). Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408-423. doi:10.1016/j.cell.2016.06.037
    OpenUrlCrossRefPubMed
  46. ↵
    1. Egile, C.,
    2. Loisel, T. P.,
    3. Laurent, V.,
    4. Li, R.,
    5. Pantaloni, D.,
    6. Sansonetti, P. J. and
    7. Carlier, M.-F.
    (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319-1332. doi:10.1083/jcb.146.6.1319
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Ercan-Sencicek, A. G.,
    2. Jambi, S.,
    3. Franjic, D.,
    4. Nishimura, S.,
    5. Li, M.,
    6. El-Fishawy, P.,
    7. Morgan, T. M.,
    8. Sanders, S. J.,
    9. Bilguvar, K.,
    10. Suri, M. et al.
    (2015). Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. Eur. J. Hum. Genet. 23, 165-172. doi:10.1038/ejhg.2014.82
    OpenUrlCrossRefPubMed
  48. ↵
    1. Faix, J. and
    2. Rottner, K.
    (2006). The making of filopodia. Curr. Opin. Cell Biol. 18, 18-25. doi:10.1016/j.ceb.2005.11.002
    OpenUrlCrossRefPubMedWeb of Science
  49. ↵
    1. Faix, J.,
    2. Breitsprecher, D.,
    3. Stradal, T. E. B. and
    4. Rottner, K.
    (2009). Filopodia: complex models for simple rods. Int. J. Biochem. Cell Biol. 41, 1656-1664. doi:10.1016/j.biocel.2009.02.012
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    1. Fowler, V. M. and
    2. Dominguez, R.
    (2017). Tropomodulins and Leiomodins: actin pointed end caps and nucleators in muscles. Biophys. J. 112, 1742-1760. doi:10.1016/j.bpj.2017.03.034
    OpenUrlCrossRef
  51. ↵
    1. Fricke, R.,
    2. Gohl, C.,
    3. Dharmalingam, E.,
    4. Grevelhörster, A.,
    5. Zahedi, B.,
    6. Harden, N.,
    7. Kessels, M.,
    8. Qualmann, B. and
    9. Bogdan, S.
    (2009). Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE. Curr. Biol. 19, 1429-1437. doi:10.1016/j.cub.2009.07.058
    OpenUrlCrossRefPubMedWeb of Science
  52. ↵
    1. Fricke, R.,
    2. Gohl, C. and
    3. Bogdan, S.
    (2010). The F-BAR protein family: Actin’ on the membrane. Commun. Integr. Biol. 3, 89-94. doi:10.4161/cib.3.2.10521
    OpenUrlCrossRefPubMed
  53. ↵
    1. Fujii, T.,
    2. Iwane, A. H.,
    3. Yanagida, T. and
    4. Namba, K.
    (2010). Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467, 724-728. doi:10.1038/nature09372
    OpenUrlCrossRefPubMedWeb of Science
  54. ↵
    1. Galletta, B. J. and
    2. Cooper, J. A.
    (2009). Actin and endocytosis: mechanisms and phylogeny. Curr. Opin. Cell Biol. 21, 20-27. doi:10.1016/j.ceb.2009.01.006
    OpenUrlCrossRefPubMedWeb of Science
  55. ↵
    1. Gardberg, M.,
    2. Kaipio, K.,
    3. Lehtinen, L.,
    4. Mikkonen, P.,
    5. Heuser, V. D.,
    6. Talvinen, K.,
    7. Iljin, K.,
    8. Kampf, C.,
    9. Uhlen, M.,
    10. Grénman, R. et al.
    (2013). FHOD1, a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell migration and invasion. PLoS ONE 8, e74923. doi:10.1371/journal.pone.0074923
    OpenUrlCrossRefPubMed
  56. ↵
    1. Gautreau, A.,
    2. Oguievetskaia, K. and
    3. Ungermann, C.
    (2014). Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harbor Perspect. Biol. 6. doi:10.1101/cshperspect.a016832
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Gauvin, T. J.,
    2. Young, L. E. and
    3. Higgs, H. N.
    (2015). The formin FMNL3 assembles plasma membrane protrusions that participate in cell-cell adhesion. Mol. Biol. Cell 26, 467-477. doi:10.1091/mbc.E14-07-1247
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Girao, H.,
    2. Geli, M.-I. and
    3. Idrissi, F.-Z.
    (2008). Actin in the endocytic pathway: from yeast to mammals. FEBS Lett. 582, 2112-2119. doi:10.1016/j.febslet.2008.04.011
    OpenUrlCrossRefPubMedWeb of Science
  59. ↵
    1. Gligorijevic, B.,
    2. Wyckoff, J.,
    3. Yamaguchi, H.,
    4. Wang, Y.,
    5. Roussos, E. T. and
    6. Condeelis, J.
    (2012). N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J. Cell Sci. 125, 724-734. doi:10.1242/jcs.092726
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Gomez, T. S. and
    2. Billadeau, D. D.
    (2009). A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699-711. doi:10.1016/j.devcel.2009.09.009
    OpenUrlCrossRefPubMedWeb of Science
  61. ↵
    1. Gomez, T. S.,
    2. Kumar, K.,
    3. Medeiros, R. B.,
    4. Shimizu, Y.,
    5. Leibson, P. J. and
    6. Billadeau, D. D.
    (2007). Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177-190. doi:10.1016/j.immuni.2007.01.008
    OpenUrlCrossRefPubMedWeb of Science
  62. ↵
    1. Gouin, E.,
    2. Egile, C.,
    3. Dehoux, P.,
    4. Villiers, V.,
    5. Adams, J.,
    6. Gertler, F.,
    7. Li, R. and
    8. Cossart, P.
    (2004). The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457-461. doi:10.1038/nature02318
    OpenUrlCrossRefPubMedWeb of Science
  63. ↵
    1. Haglund, C. M.,
    2. Choe, J. E.,
    3. Skau, C. T.,
    4. Kovar, D. R. and
    5. Welch, M. D.
    (2010). Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12, 1057-1063. doi:10.1038/ncb2109
    OpenUrlCrossRefPubMedWeb of Science
  64. ↵
    1. Hansen, S. D. and
    2. Mullins, R. D.
    (2015). Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments. Elife 4, e06585. doi:10.7554/eLife.06585
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Harbour, M. E.,
    2. Breusegem, S. Y. and
    3. Seaman, M. N. J.
    (2012). Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem. J. 442, 209-220. doi:10.1042/BJ20111761
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Harris, E. S.,
    2. Li, F. and
    3. Higgs, H. N.
    (2004). The mouse formin, FRLalpha, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments. J. Biol. Chem. 279, 20076-20087. doi:10.1074/jbc.M312718200
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Harris, E. S.,
    2. Rouiller, I.,
    3. Hanein, D. and
    4. Higgs, H. N.
    (2006). Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J. Biol. Chem. 281, 14383-14392. doi:10.1074/jbc.M510923200
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Hashimoto, Y.,
    2. Kim, D. J. and
    3. Adams, J. C.
    (2011). The roles of fascins in health and disease. J. Pathol. 224, 289-300. doi:10.1002/path.2894
    OpenUrlCrossRefPubMedWeb of Science
  69. ↵
    1. Ho, H.-Y. H.,
    2. Rohatgi, R.,
    3. Lebensohn, A. M.,
    4. Le Ma, A. M.,
    5. Li, J.,
    6. Gygi, S. P. and
    7. Kirschner, M. W.
    (2004). Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118, 203-216. doi:10.1016/j.cell.2004.06.027
    OpenUrlCrossRefPubMedWeb of Science
  70. ↵
    1. Hoffmann, A.-K.,
    2. Naj, X. and
    3. Linder, S.
    (2014). Daam1 is a regulator of filopodia formation and phagocytic uptake of Borrelia burgdorferi by primary human macrophages. FASEB J. 28, 3075-3089. doi:10.1096/fj.13-247049
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Holmes, K. C.,
    2. Popp, D.,
    3. Gebhard, W. and
    4. Kabsch, W.
    (1990). Atomic model of the actin filament. Nature 347, 44-49. doi:10.1038/347044a0
    OpenUrlCrossRefPubMedWeb of Science
  72. ↵
    1. Hotulainen, P. and
    2. Lappalainen, P.
    (2006). Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383-394. doi:10.1083/jcb.200511093
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Hotulainen, P.,
    2. Paunola, E.,
    3. Vartiainen, M. K. and
    4. Lappalainen, P.
    (2005). Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16, 649-664. doi:10.1091/mbc.E04-07-0555
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Innocenti, M.,
    2. Zucconi, A.,
    3. Disanza, A.,
    4. Frittoli, E.,
    5. Areces, L. B.,
    6. Steffen, A.,
    7. Stradal, T. E. B.,
    8. Di Fiore, P. P.,
    9. Carlier, M.-F. and
    10. Scita, G.
    (2004). Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat. Cell Biol. 6, 319-327. doi:10.1038/ncb1105
    OpenUrlCrossRefPubMedWeb of Science
  75. ↵
    1. Isogai, T.,
    2. van der Kammen, R.,
    3. Leyton-Puig, D.,
    4. Kedziora, K. M.,
    5. Jalink, K. and
    6. Innocenti, M.
    (2015). Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J. Cell Sci. 128, 3796-3810. doi:10.1242/jcs.176768
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Iwasa, J. H. and
    2. Mullins, R. D.
    (2007). Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr. Biol. 17, 395-406. doi:10.1016/j.cub.2007.02.012
    OpenUrlCrossRefPubMedWeb of Science
  77. ↵
    1. Jacquemet, G.,
    2. Hamidi, H. and
    3. Ivaska, J.
    (2015). Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol. 36, 23-31. doi:10.1016/j.ceb.2015.06.007
    OpenUrlCrossRefPubMed
  78. ↵
    1. Jaiswal, R.,
    2. Breitsprecher, D.,
    3. Collins, A.,
    4. Corrêa, I. R., Jr.,
    5. Xu, M.-Q. and
    6. Goode, B. L.
    (2013). The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr. Biol. 23, 1373-1379. doi:10.1016/j.cub.2013.06.013
    OpenUrlCrossRef
  79. ↵
    1. Jia, D.,
    2. Gomez, T. S.,
    3. Metlagel, Z.,
    4. Umetani, J.,
    5. Otwinowski, Z.,
    6. Rosen, M. K. and
    7. Billadeau, D. D.
    (2010). WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc. Natl. Acad. Sci. USA 107, 10442-10447. doi:10.1073/pnas.0913293107
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Kage, F.,
    2. Winterhoff, M.,
    3. Dimchev, V.,
    4. Mueller, J.,
    5. Thalheim, T.,
    6. Freise, A.,
    7. Brühmann, S.,
    8. Kollasser, J.,
    9. Block, J.,
    10. Dimchev, G. et al.
    (2017). FMNL formins boost lamellipodial force generation. Nat. Commun. 8, 14832. doi:10.1038/ncomms14832
    OpenUrlCrossRef
  81. ↵
    1. Kanellos, G. and
    2. Frame, M. C.
    (2016). Cellular functions of the ADF/cofilin family at a glance. J. Cell Sci. 129, 3211-3218. doi:10.1242/jcs.187849
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Kast, D. J.,
    2. Zajac, A. L.,
    3. Holzbaur, E. L. F.,
    4. Ostap, E. M. and
    5. Dominguez, R.
    (2015). WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 25, 1791-1797. doi:10.1016/j.cub.2015.05.042
    OpenUrlCrossRefPubMed
  83. ↵
    1. Kerkhoff, E.
    (2011). Actin dynamics at intracellular membranes: the Spir/formin nucleator complex. Eur. J. Cell Biol. 90, 922-925. doi:10.1016/j.ejcb.2010.10.011
    OpenUrlCrossRefPubMed
  84. ↵
    1. Kerkhoff, E.,
    2. Simpson, J. C.,
    3. Leberfinger, C. B.,
    4. Otto, I. M.,
    5. Doerks, T.,
    6. Bork, P.,
    7. Rapp, U. R.,
    8. Raabe, T. and
    9. Pepperkok, R.
    (2001). The Spir actin organizers are involved in vesicle transport processes. Curr. Biol. 11, 1963-1968. doi:10.1016/S0960-9822(01)00602-9
    OpenUrlCrossRefPubMedWeb of Science
  85. ↵
    1. King, J. S.,
    2. Gueho, A.,
    3. Hagedorn, M.,
    4. Gopaldass, N.,
    5. Leuba, F.,
    6. Soldati, T. and
    7. Insall, R. H.
    (2013). WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Mol. Biol. Cell 24, 2714-2726. doi:10.1091/mbc.E13-02-0092
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Korobova, F. and
    2. Svitkina, T.
    (2008). Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol. Biol. Cell 19, 1561-1574. doi:10.1091/mbc.E07-09-0964
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Krause, M. and
    2. Gautreau, A.
    (2014). Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15, 577-590. doi:10.1038/nrm3861
    OpenUrlCrossRefPubMed
  88. ↵
    1. Kühn, S.,
    2. Erdmann, C.,
    3. Kage, F.,
    4. Block, J.,
    5. Schwenkmezger, L.,
    6. Steffen, A.,
    7. Rottner, K. and
    8. Geyer, M.
    (2015). The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat. Commun. 6, 7088. doi:10.1038/ncomms8088
    OpenUrlCrossRefPubMed
  89. ↵
    1. Kvainickas, A.,
    2. Orgaz, A. J.,
    3. Nägele, H.,
    4. Diedrich, B.,
    5. Heesom, K. J.,
    6. Dengjel, J.,
    7. Cullen, P. J. and
    8. Steinberg, F.
    (2017). Retromer- and WASH-dependent sorting of nutrient transporters requires a multivalent interaction network with ANKRD50. J. Cell Sci. 130, 382-395. doi:10.1242/jcs.196758
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Lai, F. P. L.,
    2. Szczodrak, M.,
    3. Block, J.,
    4. Faix, J.,
    5. Breitsprecher, D.,
    6. Mannherz, H. G.,
    7. Stradal, T. E. B.,
    8. Dunn, G. A.,
    9. Small, J. V. and
    10. Rottner, K.
    (2008). Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982-992. doi:10.1038/emboj.2008.34
    OpenUrlCrossRefPubMedWeb of Science
  91. ↵
    1. Lai, F. P. L.,
    2. Szczodrak, M.,
    3. Oelkers, J. M.,
    4. Ladwein, M.,
    5. Acconcia, F.,
    6. Benesch, S.,
    7. Auinger, S.,
    8. Faix, J.,
    9. Small, J. V.,
    10. Polo, S. et al.
    (2009). Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol. Biol. Cell 20, 3209-3223. doi:10.1091/mbc.E08-12-1180
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Lammel, U.,
    2. Bechtold, M.,
    3. Risse, B.,
    4. Berh, D.,
    5. Fleige, A.,
    6. Bunse, I.,
    7. Jiang, X.,
    8. Klambt, C. and
    9. Bogdan, S.
    (2014). The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development 141, 1366-1380. doi:10.1242/dev.101352
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Law, A.-L.,
    2. Vehlow, A.,
    3. Kotini, M.,
    4. Dodgson, L.,
    5. Soong, D.,
    6. Theveneau, E.,
    7. Bodo, C.,
    8. Taylor, E.,
    9. Navarro, C.,
    10. Perera, U. et al.
    (2013). Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J. Cell Biol. 203, 673-689. doi:10.1083/jcb.201304051
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Law, R.,
    2. Dixon-Salazar, T.,
    3. Jerber, J.,
    4. Cai, N.,
    5. Abbasi, A. A.,
    6. Zaki, M. S.,
    7. Mittal, K.,
    8. Gabriel, S. B.,
    9. Rafiq, M. A.,
    10. Khan, V. et al.
    (2014). Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability. Am. J. Hum. Genet. 95, 721-728. doi:10.1016/j.ajhg.2014.10.016
    OpenUrlCrossRefPubMed
  95. ↵
    1. Lebensohn, A. M. and
    2. Kirschner, M. W.
    (2009). Activation of the WAVE complex by coincident signals controls actin assembly. Mol. Cell 36, 512-524. doi:10.1016/j.molcel.2009.10.024
    OpenUrlCrossRefPubMedWeb of Science
  96. ↵
    1. Leite, F. and
    2. Way, M.
    (2015). The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Res. 209, 87-99. doi:10.1016/j.virusres.2015.01.024
    OpenUrlCrossRefPubMed
  97. ↵
    1. Leithner, A.,
    2. Eichner, A.,
    3. Müller, J.,
    4. Reversat, A.,
    5. Brown, M.,
    6. Schwarz, J.,
    7. Merrin, J.,
    8. de Gorter, D. J. J.,
    9. Schur, F.,
    10. Bayerl, J. et al.
    (2016). Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nat. Cell Biol. 18, 1253-1259. doi:10.1038/ncb3426
    OpenUrlCrossRef
  98. ↵
    1. Li, F. and
    2. Higgs, H. N.
    (2003). The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335-1340. doi:10.1016/S0960-9822(03)00540-2
    OpenUrlCrossRefPubMedWeb of Science
  99. ↵
    1. Linder, S.
    (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 17, 107-117. doi:10.1016/j.tcb.2007.01.002
    OpenUrlCrossRefPubMedWeb of Science
  100. ↵
    1. Linder, S. and
    2. Wiesner, C.
    (2016). Feel the force: podosomes in mechanosensing. Exp. Cell Res. 343, 67-72. doi:10.1016/j.yexcr.2015.11.026
    OpenUrlCrossRef
  101. ↵
    1. Linder, S.,
    2. Nelson, D.,
    3. Weiss, M. and
    4. Aepfelbacher, M.
    (1999). Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl. Acad. Sci. USA 96, 9648-9653. doi:10.1073/pnas.96.17.9648
    OpenUrlAbstract/FREE Full Text
  102. ↵
    1. Linder, S.,
    2. Higgs, H.,
    3. Hufner, K.,
    4. Schwarz, K.,
    5. Pannicke, U. and
    6. Aepfelbacher, M.
    (2000). The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J. Immunol. 165, 221-225. doi:10.4049/jimmunol.165.1.221
    OpenUrlAbstract/FREE Full Text
  103. ↵
    1. Liverman, A. D. B.,
    2. Cheng, H.-C.,
    3. Trosky, J. E.,
    4. Leung, D. W.,
    5. Yarbrough, M. L.,
    6. Burdette, D. L.,
    7. Rosen, M. K. and
    8. Orth, K.
    (2007). Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc. Natl. Acad. Sci. USA 104, 17117-17122. doi:10.1073/pnas.0703196104
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Livne, A. and
    2. Geiger, B.
    (2016). The inner workings of stress fibers - from contractile machinery to focal adhesions and back. J. Cell Sci. 129, 1293-1304. doi:10.1242/jcs.180927
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Lizarraga, F.,
    2. Poincloux, R.,
    3. Romao, M.,
    4. Montagnac, G.,
    5. Le Dez, G.,
    6. Bonne, I.,
    7. Rigaill, G.,
    8. Raposo, G. and
    9. Chavrier, P.
    (2009). Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res. 69, 2792-2800. doi:10.1158/0008-5472.CAN-08-3709
    OpenUrlAbstract/FREE Full Text
  106. ↵
    1. Lorenz, M.,
    2. Yamaguchi, H.,
    3. Wang, Y.,
    4. Singer, R. H. and
    5. Condeelis, J.
    (2004). Imaging sites of N-wasp activity in lamellipodia and invadopodia of carcinoma cells. Curr. Biol. 14, 697-703. doi:10.1016/j.cub.2004.04.008
    OpenUrlCrossRefPubMedWeb of Science
  107. ↵
    1. Luxenburg, C.,
    2. Geblinger, D.,
    3. Klein, E.,
    4. Anderson, K.,
    5. Hanein, D.,
    6. Geiger, B. and
    7. Addadi, L.
    (2007). The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS ONE 2, e179. doi:10.1371/journal.pone.0000179
    OpenUrlCrossRefPubMed
  108. ↵
    1. Machesky, L. M. and
    2. Insall, R. H.
    (1998). Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347-1356. doi:10.1016/S0960-9822(98)00015-3
    OpenUrlCrossRefPubMedWeb of Science
  109. ↵
    1. Mallavarapu, A. and
    2. Mitchison, T.
    (1999). Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097-1106. doi:10.1083/jcb.146.5.1097
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. Manor, U.,
    2. Bartholomew, S.,
    3. Golani, G.,
    4. Christenson, E.,
    5. Kozlov, M.,
    6. Higgs, H.,
    7. Spudich, J. and
    8. Lippincott-Schwartz, J.
    (2015). A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. Elife 4, e08828. doi:10.7554/eLife.08828
    OpenUrlAbstract/FREE Full Text
  111. ↵
    1. Mattila, P. K. and
    2. Lappalainen, P.
    (2008). Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446-454. doi:10.1038/nrm2406
    OpenUrlCrossRefPubMedWeb of Science
  112. ↵
    1. Mejillano, M. R.,
    2. Kojima, S.,
    3. Applewhite, D. A.,
    4. Gertler, F. B.,
    5. Svitkina, T. M. and
    6. Borisy, G. G.
    (2004). Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363-373. doi:10.1016/j.cell.2004.07.019
    OpenUrlCrossRefPubMedWeb of Science
  113. ↵
    1. Mellor, H.
    (2010). The role of formins in filopodia formation. Biochim. Biophys. Acta 1803, 191-200. doi:10.1016/j.bbamcr.2008.12.018
    OpenUrlCrossRefPubMedWeb of Science
  114. ↵
    1. Mersich, A. T.,
    2. Miller, M. R.,
    3. Chkourko, H. and
    4. Blystone, S. D.
    (2010). The formin FRL1 (FMNL1) is an essential component of macrophage podosomes. Cytoskeleton (Hoboken) 67, 573-585. doi:10.1002/cm.20468
    OpenUrlCrossRefPubMed
  115. ↵
    1. Millard, T. H. and
    2. Martin, P.
    (2008). Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135, 621-626. doi:10.1242/dev.014001
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Monsky, W. L.,
    2. Kelly, T.,
    3. Lin, C. Y.,
    4. Yeh, Y.,
    5. Stetler-Stevenson, W. G.,
    6. Mueller, S. C. and
    7. Chen, W. T.
    (1993). Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53, 3159-3164.
    OpenUrlAbstract/FREE Full Text
  117. ↵
    1. Moreau, V.,
    2. Tatin, F.,
    3. Varon, C. and
    4. Genot, E.
    (2003). Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol. Cell. Biol. 23, 6809-6822. doi:10.1128/MCB.23.19.6809-6822.2003
    OpenUrlAbstract/FREE Full Text
  118. ↵
    1. Mullins, R. D.,
    2. Heuser, J. A. and
    3. Pollard, T. D.
    (1998). The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95, 6181-6186. doi:10.1073/pnas.95.11.6181
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Munjal, A. and
    2. Lecuit, T.
    (2014). Actomyosin networks and tissue morphogenesis. Development 141, 1789-1793. doi:10.1242/dev.091645
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Murphy, D. A.,
    2. Diaz, B.,
    3. Bromann, P. A.,
    4. Tsai, J. H.,
    5. Kawakami, Y.,
    6. Maurer, J.,
    7. Stewart, R. A.,
    8. Izpisúa-Belmonte, J. C. and
    9. Courtneidge, S. A.
    (2011). A Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLoS ONE 6, e22499. doi:10.1371/journal.pone.0022499
    OpenUrlCrossRefPubMed
  121. ↵
    1. Nagel, B. M.,
    2. Bechtold, M.,
    3. Rodriguez, L. G. and
    4. Bogdan, S.
    (2017). Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J. Cell Sci. 130, 344-359. doi:10.1242/jcs.193086
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Nicholson-Dykstra, S. M. and
    2. Higgs, H. N.
    (2008). Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cell Motil. Cytoskeleton 65, 904-922. doi:10.1002/cm.20312
    OpenUrlCrossRefPubMedWeb of Science
  123. ↵
    1. Oda, T.,
    2. Iwasa, M.,
    3. Aihara, T.,
    4. Maéda, Y. and
    5. Narita, A.
    (2009). The nature of the globular- to fibrous-actin transition. Nature 457, 441-445. doi:10.1038/nature07685
    OpenUrlCrossRefPubMedWeb of Science
  124. ↵
    1. Otomo, T.,
    2. Otomo, C.,
    3. Tomchick, D. R.,
    4. Machius, M. and
    5. Rosen, M. K.
    (2005a). Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol. Cell 18, 273-281. doi:10.1016/j.molcel.2005.04.002
    OpenUrlCrossRefPubMedWeb of Science
  125. ↵
    1. Otomo, T.,
    2. Tomchick, D. R.,
    3. Otomo, C.,
    4. Panchal, S. C.,
    5. Machius, M. and
    6. Rosen, M. K.
    (2005b). Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433, 488-494. doi:10.1038/nature03251
    OpenUrlCrossRefPubMedWeb of Science
  126. ↵
    1. Pantaloni, D. and
    2. Carlier, M.-F.
    (1993). How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75, 1007-1014. doi:10.1016/0092-8674(93)90544-Z
    OpenUrlCrossRefPubMedWeb of Science
  127. ↵
    1. Panzer, L.,
    2. Trübe, L.,
    3. Klose, M.,
    4. Joosten, B.,
    5. Slotman, J.,
    6. Cambi, A. and
    7. Linder, S.
    (2016). The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. J. Cell Sci. 129, 298-313. doi:10.1242/jcs.177691
    OpenUrlAbstract/FREE Full Text
  128. ↵
    1. Pellegrin, S. and
    2. Mellor, H.
    (2007). Actin stress fibres. J. Cell Sci. 120, 3491-3499. doi:10.1242/jcs.018473
    OpenUrlAbstract/FREE Full Text
  129. ↵
    1. Pernier, J.,
    2. Orban, J.,
    3. Avvaru, B. S.,
    4. Jégou, A.,
    5. Romet-Lemonne, G.,
    6. Guichard, B. and
    7. Carlier, M.-F.
    (2013). Dimeric WH2 domains in Vibrio VopF promote actin filament barbed-end uncapping and assisted elongation. Nat. Struct. Mol. Biol. 20, 1069-1076. doi:10.1038/nsmb.2639
    OpenUrlCrossRefPubMed
  130. ↵
    1. Pfaff, M. and
    2. Jurdic, P.
    (2001). Podosomes in osteoclast-like cells: structural analysis and cooperative roles of paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin alphaVbeta3. J. Cell Sci. 114, 2775-2786.
    OpenUrlAbstract/FREE Full Text
  131. ↵
    1. Pfender, S.,
    2. Kuznetsov, V.,
    3. Pleiser, S.,
    4. Kerkhoff, E. and
    5. Schuh, M.
    (2011). Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr. Biol. 21, 955-960. doi:10.1016/j.cub.2011.04.029
    OpenUrlCrossRefPubMed
  132. ↵
    1. Piotrowski, J. T.,
    2. Gomez, T. S.,
    3. Schoon, R. A.,
    4. Mangalam, A. K. and
    5. Billadeau, D. D.
    (2013). WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol. Cell. Biol. 33, 958-973. doi:10.1128/MCB.01288-12
    OpenUrlAbstract/FREE Full Text
  133. ↵
    1. Pollard, T. D.
    (2014). The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis. Biophys. J. 107, 2499-2507. doi:10.1016/j.bpj.2014.10.031
    OpenUrlCrossRef
  134. ↵
    1. Pollard, T. D. and
    2. Cooper, J. A.
    (2009). Actin, a central player in cell shape and movement. Science 326, 1208-1212. doi:10.1126/science.1175862
    OpenUrlAbstract/FREE Full Text
  135. ↵
    1. Poulter, N. S.,
    2. Pollitt, A. Y.,
    3. Davies, A.,
    4. Malinova, D.,
    5. Nash, G. B.,
    6. Hannon, M. J.,
    7. Pikramenou, Z.,
    8. Rappoport, J. Z.,
    9. Hartwig, J. H.,
    10. Owen, D. M. et al.
    (2015). Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat. Commun. 6, 7254. doi:10.1038/ncomms8254
    OpenUrlCrossRef
  136. ↵
    1. Pruyne, D.,
    2. Evangelista, M.,
    3. Yang, C.,
    4. Bi, E.,
    5. Zigmond, S.,
    6. Bretscher, A. and
    7. Boone, C.
    (2002). Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612-615. doi:10.1126/science.1072309
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Puthenveedu, M. A.,
    2. Lauffer, B.,
    3. Temkin, P.,
    4. Vistein, R.,
    5. Carlton, P.,
    6. Thorn, K.,
    7. Taunton, J.,
    8. Weiner, O. D.,
    9. Parton, R. G. and
    10. von Zastrow, M.
    (2010). Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell 143, 761-773. doi:10.1016/j.cell.2010.10.003
    OpenUrlCrossRefPubMedWeb of Science
  138. ↵
    1. Pylypenko, O.,
    2. Welz, T.,
    3. Tittel, J.,
    4. Kollmar, M.,
    5. Chardon, F.,
    6. Malherbe, G.,
    7. Weiss, S.,
    8. Michel, C. I.,
    9. Samol-Wolf, A.,
    10. Grasskamp, A. T. et al.
    (2016). Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. eLife 5, e17523. doi:10.7554/eLife.17523
    OpenUrlCrossRef
  139. ↵
    1. Quinlan, M. E. and
    2. Kerkhoff, E.
    (2008). Actin nucleation: bacteria get in-Spired. Nat. Cell Biol. 10, 13-15. doi:10.1038/ncb0108-13
    OpenUrlCrossRefPubMedWeb of Science
  140. ↵
    1. Quinlan, M. E.,
    2. Heuser, J. E.,
    3. Kerkhoff, E. and
    4. Mullins, R. D.
    (2005). Drosophila Spire is an actin nucleation factor. Nature 433, 382-388. doi:10.1038/nature03241
    OpenUrlCrossRefPubMedWeb of Science
  141. ↵
    1. Ramalingam, N.,
    2. Franke, C.,
    3. Jaschinski, E.,
    4. Winterhoff, M.,
    5. Lu, Y.,
    6. Brühmann, S.,
    7. Junemann, A.,
    8. Meier, H.,
    9. Noegel, A. A.,
    10. Weber, I. et al.
    (2015). A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement. Nat. Commun. 6, 8496. doi:10.1038/ncomms9496
    OpenUrlCrossRefPubMed
  142. ↵
    1. Ridley, A. J.,
    2. Paterson, H. F.,
    3. Johnston, C. L.,
    4. Diekmann, D. and
    5. Hall, A.
    (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401-410. doi:10.1016/0092-8674(92)90164-8
    OpenUrlCrossRefPubMedWeb of Science
  143. ↵
    1. Rohatgi, R.,
    2. Ma, L.,
    3. Miki, H.,
    4. Lopez, M.,
    5. Kirchhausen, T.,
    6. Takenawa, T. and
    7. Kirschner, M. W.
    (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221-231. doi:10.1016/S0092-8674(00)80732-1
    OpenUrlCrossRefPubMedWeb of Science
  144. ↵
    1. Romero, S.,
    2. Le Clainche, C.,
    3. Didry, D.,
    4. Egile, C.,
    5. Pantaloni, D. and
    6. Carlier, M.-F.
    (2004). Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419-429. doi:10.1016/j.cell.2004.09.039
    OpenUrlCrossRefPubMedWeb of Science
  145. ↵
    1. Rose, R.,
    2. Weyand, M.,
    3. Lammers, M.,
    4. Ishizaki, T.,
    5. Ahmadian, M. R. and
    6. Wittinghofer, A.
    (2005). Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435, 513-518. doi:10.1038/nature03604
    OpenUrlCrossRefPubMedWeb of Science
  146. ↵
    1. Rottner, K. and
    2. Stradal, T. E. B.
    (2011). Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol. 23, 569-578. doi:10.1016/j.ceb.2011.07.003
    OpenUrlCrossRefPubMed
  147. ↵
    1. Rottner, K.,
    2. Hänisch, J. and
    3. Campellone, K. G.
    (2010). WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol. 20, 650-661. doi:10.1016/j.tcb.2010.08.014
    OpenUrlCrossRefPubMedWeb of Science
  148. ↵
    1. Sagot, I.,
    2. Rodal, A. A.,
    3. Moseley, J.,
    4. Goode, B. L. and
    5. Pellman, D.
    (2002). An actin nucleation mechanism mediated by Bni1 and profilin. Nat. Cell Biol. 4, 626-631. doi:10.1038/ncb834
    OpenUrlCrossRefPubMedWeb of Science
  149. ↵
    1. Salbreux, G.,
    2. Charras, G. and
    3. Paluch, E.
    (2012). Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536-545. doi:10.1016/j.tcb.2012.07.001
    OpenUrlCrossRefPubMedWeb of Science
  150. ↵
    1. Sarmiento, C.,
    2. Wang, W.,
    3. Dovas, A.,
    4. Yamaguchi, H.,
    5. Sidani, M.,
    6. El-Sibai, M.,
    7. Desmarais, V.,
    8. Holman, H. A.,
    9. Kitchen, S.,
    10. Backer, J. M. et al.
    (2008). WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J. Cell Biol. 180, 1245-1260. doi:10.1083/jcb.200708123
    OpenUrlAbstract/FREE Full Text
  151. ↵
    1. Schachtner, H.,
    2. Calaminus, S. D. J.,
    3. Sinclair, A.,
    4. Monypenny, J.,
    5. Blundell, M. P.,
    6. Leon, C.,
    7. Holyoake, T. L.,
    8. Thrasher, A. J.,
    9. Michie, A. M.,
    10. Vukovic, M. et al.
    (2013). Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 121, 2542-2552. doi:10.1182/blood-2012-07-443457
    OpenUrlAbstract/FREE Full Text
  152. ↵
    1. Schirenbeck, A.,
    2. Bretschneider, T.,
    3. Arasada, R.,
    4. Schleicher, M. and
    5. Faix, J.
    (2005). The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat. Cell Biol. 7, 619-625. doi:10.1038/ncb1266
    OpenUrlCrossRefPubMedWeb of Science
  153. ↵
    1. Schlüter, K.,
    2. Waschbüsch, D.,
    3. Anft, M.,
    4. Hügging, D.,
    5. Kind, S.,
    6. Hänisch, J.,
    7. Lakisic, G.,
    8. Gautreau, A.,
    9. Barnekow, A. and
    10. Stradal, T. E. B.
    (2014). JMY is involved in anterograde vesicle trafficking from the trans-Golgi network. Eur. J. Cell Biol. 93, 194-204. doi:10.1016/j.ejcb.2014.06.001
    OpenUrlCrossRefPubMed
  154. ↵
    1. Schoen, C. J.,
    2. Emery, S. B.,
    3. Thorne, M. C.,
    4. Ammana, H. R.,
    5. Sliwerska, E.,
    6. Arnett, J.,
    7. Hortsch, M.,
    8. Hannan, F.,
    9. Burmeister, M. and
    10. Lesperance, M. M.
    (2010). Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila. Proc. Natl. Acad. Sci. USA 107, 13396-13401. doi:10.1073/pnas.1003027107
    OpenUrlAbstract/FREE Full Text
  155. ↵
    1. Schoen, C. J.,
    2. Burmeister, M. and
    3. Lesperance, M. M.
    (2013). Diaphanous homolog 3 (Diap3) overexpression causes progressive hearing loss and inner hair cell defects in a transgenic mouse model of human deafness. PLoS ONE 8, e56520. doi:10.1371/journal.pone.0056520
    OpenUrlCrossRefPubMed
  156. ↵
    1. Schönichen, A.,
    2. Mannherz, H. G.,
    3. Behrmann, E.,
    4. Mazur, A. J.,
    5. Kuhn, S.,
    6. Silvan, U.,
    7. Schoenenberger, C.-A.,
    8. Fackler, O. T.,
    9. Raunser, S.,
    10. Dehmelt, L. et al.
    (2013). FHOD1 is a combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers. J. Cell Sci. 126, 1891-1901. doi:10.1242/jcs.126706
    OpenUrlAbstract/FREE Full Text
  157. ↵
    1. Schoumacher, M.,
    2. Goldman, R. D.,
    3. Louvard, D. and
    4. Vignjevic, D. M.
    (2010). Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189, 541-556. doi:10.1083/jcb.200909113
    OpenUrlAbstract/FREE Full Text
  158. ↵
    1. Schuh, M.
    (2011). An actin-dependent mechanism for long-range vesicle transport. Nat. Cell Biol. 13, 1431-1436. doi:10.1038/ncb2353
    OpenUrlCrossRefPubMedWeb of Science
  159. ↵
    1. Schulze, N.,
    2. Graessl, M.,
    3. Blancke Soares, A.,
    4. Geyer, M.,
    5. Dehmelt, L. and
    6. Nalbant, P.
    (2014). FHOD1 regulates stress fiber organization by controlling the dynamics of transverse arcs and dorsal fibers. J. Cell Sci. 127, 1379-1393. doi:10.1242/jcs.134627
    OpenUrlAbstract/FREE Full Text
  160. ↵
    1. Sens, P. and
    2. Plastino, J.
    (2015). Membrane tension and cytoskeleton organization in cell motility. J. Phys. Condens. Matter 27, 273103. doi:10.1088/0953-8984/27/27/273103
    OpenUrlCrossRefPubMed
  161. ↵
    1. Sept, D. and
    2. McCammon, J. A.
    (2001). Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667-674. doi:10.1016/S0006-3495(01)75731-1
    OpenUrlCrossRefPubMedWeb of Science
  162. ↵
    1. Skau, C. T. and
    2. Waterman, C. M.
    (2015). Specification of architecture and function of actin structures by actin nucleation factors. Annu. Rev. Biophys. 44, 285-310. doi:10.1146/annurev-biophys-060414-034308
    OpenUrlCrossRefPubMed
  163. ↵
    1. Skau, C. T.,
    2. Plotnikov, S. V.,
    3. Doyle, A. D. and
    4. Waterman, C. M.
    (2015). Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly. Proc. Natl. Acad. Sci. USA 112, E2447-E2456. doi:10.1073/pnas.1505035112
    OpenUrlAbstract/FREE Full Text
  164. ↵
    1. Small, J. V.,
    2. Stradal, T.,
    3. Vignal, E. and
    4. Rottner, K.
    (2002). The lamellipodium: where motility begins. Trends Cell Biol. 12, 112-120. doi:10.1016/S0962-8924(01)02237-1
    OpenUrlCrossRefPubMedWeb of Science
  165. ↵
    1. Steffen, A.,
    2. Rottner, K.,
    3. Ehinger, J.,
    4. Innocenti, M.,
    5. Scita, G.,
    6. Wehland, J. and
    7. Stradal, T. E. B.
    (2004). Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J. 23, 749-759. doi:10.1038/sj.emboj.7600084
    OpenUrlAbstract/FREE Full Text
  166. ↵
    1. Steffen, A.,
    2. Faix, J.,
    3. Resch, G. P.,
    4. Linkner, J.,
    5. Wehland, J.,
    6. Small, J. V.,
    7. Rottner, K. and
    8. Stradal, T. E.
    (2006). Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol. Biol. Cell 17, 2581-2591. doi:10.1091/mbc.E05-11-1088
    OpenUrlAbstract/FREE Full Text
  167. ↵
    1. Steffen, A.,
    2. Ladwein, M.,
    3. Dimchev, G. A.,
    4. Hein, A.,
    5. Schwenkmezger, L.,
    6. Arens, S.,
    7. Ladwein, K. I.,
    8. Margit Holleboom, J.,
    9. Schur, F.,
    10. Victor Small, J. et al.
    (2013). Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. J. Cell Sci. 126, 4572-4588. doi:10.1242/jcs.118232
    OpenUrlAbstract/FREE Full Text
  168. ↵
    1. Steffen, A.,
    2. Koestler, S. A. and
    3. Rottner, K.
    (2014). Requirements for and consequences of Rac-dependent protrusion. Eur. J. Cell Biol. 93, 184-193. doi:10.1016/j.ejcb.2014.01.008
    OpenUrlCrossRefPubMed
  169. ↵
    1. Stewart, D. M.,
    2. Tian, L. and
    3. Nelson, D. L.
    (1999). Mutations that cause the Wiskott-Aldrich syndrome impair the interaction of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein. J. Immunol. 162, 5019-5024.
    OpenUrlAbstract/FREE Full Text
  170. ↵
    1. Stewart, M. P.,
    2. Helenius, J.,
    3. Toyoda, Y.,
    4. Ramanathan, S. P.,
    5. Muller, D. J. and
    6. Hyman, A. A.
    (2011). Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226-230. doi:10.1038/nature09642
    OpenUrlCrossRefPubMedWeb of Science
  171. ↵
    1. Stradal, T. E. B. and
    2. Scita, G.
    (2006). Protein complexes regulating Arp2/3-mediated actin assembly. Curr. Opin. Cell Biol. 18, 4-10. doi:10.1016/j.ceb.2005.12.003
    OpenUrlCrossRefPubMedWeb of Science
  172. ↵
    1. Suraneni, P.,
    2. Rubinstein, B.,
    3. Unruh, J. R.,
    4. Durnin, M.,
    5. Hanein, D. and
    6. Li, R.
    (2012). The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197, 239-251. doi:10.1083/jcb.201112113
    OpenUrlAbstract/FREE Full Text
  173. ↵
    1. Svitkina, T. M. and
    2. Borisy, G. G.
    (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009-1026. doi:10.1083/jcb.145.5.1009
    OpenUrlAbstract/FREE Full Text
  174. ↵
    1. Svitkina, T. M.,
    2. Bulanova, E. A.,
    3. Chaga, O. Y.,
    4. Vignjevic, D. M.,
    5. Kojima, S.,
    6. Vasiliev, J. M. and
    7. Borisy, G. G.
    (2003). Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409-421. doi:10.1083/jcb.200210174
    OpenUrlAbstract/FREE Full Text
  175. ↵
    1. Takano, K.,
    2. Toyooka, K. and
    3. Suetsugu, S.
    (2008). EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J. 27, 2817-2828. doi:10.1038/emboj.2008.216
    OpenUrlCrossRefPubMedWeb of Science
  176. ↵
    1. Tam, V. C.,
    2. Serruto, D.,
    3. Dziejman, M.,
    4. Brieher, W. and
    5. Mekalanos, J. J.
    (2007). A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 1, 95-107. doi:10.1016/j.chom.2007.03.005
    OpenUrlCrossRefPubMedWeb of Science
  177. ↵
    1. Teti, A.,
    2. Grano, M.,
    3. Carano, A.,
    4. Colucci, S. and
    5. Zambonin Zallone, A.
    (1989). Immunolocalization of beta 3 subunit of integrins in osteoclast membrane. Boll. Soc. Ital. Biol. Sper. 65, 1031-1037.
    OpenUrlPubMed
  178. ↵
    1. Tittel, J.,
    2. Welz, T.,
    3. Czogalla, A.,
    4. Dietrich, S.,
    5. Samol-Wolf, A.,
    6. Schulte, M.,
    7. Schwille, P.,
    8. Weidemann, T. and
    9. Kerkhoff, E.
    (2015). Membrane targeting of the Spir formin actin nucleator complex requires a sequential handshake of polar interactions. J. Biol. Chem. 290, 6428-6444. doi:10.1074/jbc.M114.602672
    OpenUrlAbstract/FREE Full Text
  179. ↵
    1. Valdmanis, P. N.,
    2. Meijer, I. A.,
    3. Reynolds, A.,
    4. Lei, A.,
    5. MacLeod, P.,
    6. Schlesinger, D.,
    7. Zatz, M.,
    8. Reid, E.,
    9. Dion, P. A.,
    10. Drapeau, P. et al.
    (2007). Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am. J. Hum. Genet. 80, 152-161. doi:10.1086/510782
    OpenUrlCrossRefPubMedWeb of Science
  180. ↵
    1. van den Dries, K.,
    2. Meddens, M. B. M.,
    3. de Keijzer, S.,
    4. Shekhar, S.,
    5. Subramaniam, V.,
    6. Figdor, C. G. and
    7. Cambi, A.
    (2013). Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat. Commun. 4, 1412. doi:10.1038/ncomms2402
    OpenUrlCrossRefPubMed
  181. ↵
    1. Vargas, P.,
    2. Maiuri, P.,
    3. Bretou, M.,
    4. Sáez, P. J.,
    5. Pierobon, P.,
    6. Maurin, M.,
    7. Chabaud, M.,
    8. Lankar, D.,
    9. Obino, D.,
    10. Terriac, E. et al.
    (2016). Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat. Cell Biol. 18, 43-53. doi:10.1038/ncb3284
    OpenUrlCrossRefPubMed
  182. ↵
    1. Vavylonis, D.,
    2. Kovar, D. R.,
    3. O'Shaughnessy, B. and
    4. Pollard, T. D.
    (2006). Model of formin-associated actin filament elongation. Mol. Cell 21, 455-466. doi:10.1016/j.molcel.2006.01.016
    OpenUrlCrossRefPubMedWeb of Science
  183. ↵
    1. Vignjevic, D.,
    2. Kojima, S.,
    3. Aratyn, Y.,
    4. Danciu, O.,
    5. Svitkina, T. and
    6. Borisy, G. G.
    (2006). Role of fascin in filopodial protrusion. J. Cell Biol. 174, 863-875. doi:10.1083/jcb.200603013
    OpenUrlAbstract/FREE Full Text
  184. ↵
    1. Viveiros, R.,
    2. Hutter, H. and
    3. Moerman, D. G.
    (2011). Membrane extensions are associated with proper anterior migration of muscle cells during Caenorhabditis elegans embryogenesis. Dev. Biol. 358, 189-200. doi:10.1016/j.ydbio.2011.07.026
    OpenUrlCrossRefPubMed
  185. ↵
    1. Watanabe, N.,
    2. Kato, T.,
    3. Fujita, A.,
    4. Ishizaki, T. and
    5. Narumiya, S.
    (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1, 136-143. doi:10.1038/11056
    OpenUrlCrossRefPubMedWeb of Science
  186. ↵
    1. Welch, M. D.,
    2. Iwamatsu, A. and
    3. Mitchison, T. J.
    (1997). Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265-269. doi:10.1038/385265a0
    OpenUrlCrossRefPubMedWeb of Science
  187. ↵
    1. Winkelman, J. D.,
    2. Bilancia, C. G.,
    3. Peifer, M. and
    4. Kovar, D. R.
    (2014). Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc. Natl. Acad. Sci. USA 111, 4121-4126. doi:10.1073/pnas.1322093111
    OpenUrlAbstract/FREE Full Text
  188. ↵
    1. Wu, C.,
    2. Asokan, S. B.,
    3. Berginski, M. E.,
    4. Haynes, E. M.,
    5. Sharpless, N. E.,
    6. Griffith, J. D.,
    7. Gomez, S. M. and
    8. Bear, J. E.
    (2012). Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973-987. doi:10.1016/j.cell.2011.12.034
    OpenUrlCrossRefPubMedWeb of Science
  189. ↵
    1. Xia, P.,
    2. Wang, S.,
    3. Du, Y.,
    4. Zhao, Z.,
    5. Shi, L.,
    6. Sun, L.,
    7. Huang, G.,
    8. Ye, B.,
    9. Li, C.,
    10. Dai, Z. et al.
    (2013). WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 32, 2685-2696. doi:10.1038/emboj.2013.189
    OpenUrlCrossRefPubMed
  190. ↵
    1. Xia, P.,
    2. Wang, S.,
    3. Huang, G.,
    4. Du, Y.,
    5. Zhu, P.,
    6. Li, M. and
    7. Fan, Z.
    (2014). RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res. 24, 943-958. doi:10.1038/cr.2014.85
    OpenUrlCrossRefPubMed
  191. ↵
    1. Xue, B. and
    2. Robinson, R. C.
    (2013). Guardians of the actin monomer. Eur. J. Cell Biol. 92, 316-332. doi:10.1016/j.ejcb.2013.10.012
    OpenUrlCrossRefPubMed
  192. ↵
    1. Yamaguchi, H.,
    2. Lorenz, M.,
    3. Kempiak, S.,
    4. Sarmiento, C.,
    5. Coniglio, S.,
    6. Symons, M.,
    7. Segall, J.,
    8. Eddy, R.,
    9. Miki, H.,
    10. Takenawa, T. et al.
    (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441-452. doi:10.1083/jcb.200407076
    OpenUrlAbstract/FREE Full Text
  193. ↵
    1. Yamakita, Y.,
    2. Matsumura, F. and
    3. Yamashiro, S.
    (2009). Fascin1 is dispensable for mouse development but is favorable for neonatal survival. Cell Motil. Cytoskeleton 66, 524-534. doi:10.1002/cm.20356
    OpenUrlCrossRefPubMedWeb of Science
  194. ↵
    1. Yang, C. and
    2. Svitkina, T.
    (2011). Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adhes. Migr. 5, 402-408. doi:10.4161/cam.5.5.16971
    OpenUrlCrossRefPubMedWeb of Science
  195. ↵
    1. Young, L. E.,
    2. Heimsath, E. G. and
    3. Higgs, H. N.
    (2015). Cell type-dependent mechanisms for formin-mediated assembly of filopodia. Mol. Biol. Cell 26, 4646-4659. doi:10.1091/mbc.E15-09-0626
    OpenUrlAbstract/FREE Full Text
  196. ↵
    1. Zambonin-Zallone, A.,
    2. Teti, A.,
    3. Grano, M.,
    4. Rubinacci, A.,
    5. Abbadini, M.,
    6. Gaboli, M. and
    7. Marchisio, P. C.
    (1989). Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp. Cell Res. 182, 645-652. doi:10.1016/0014-4827(89)90266-8
    OpenUrlCrossRefPubMedWeb of Science
  197. ↵
    1. Zech, T.,
    2. Calaminus, S. D. J.,
    3. Caswell, P.,
    4. Spence, H. J.,
    5. Carnell, M.,
    6. Insall, R. H.,
    7. Norman, J. and
    8. Machesky, L. M.
    (2011). The Arp2/3 activator WASH regulates alpha5beta1-integrin-mediated invasive migration. J. Cell Sci. 124, 3753-3759. doi:10.1242/jcs.080986
    OpenUrlAbstract/FREE Full Text
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Actin cytoskeleton
  • Actin nucleation
  • Actin filament elongation
  • Myosin force generation
  • Membrane protrusion
  • Membrane contractions
  • Membrane trafficking
  • Rho-GTPase signalling

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Actin assembly mechanisms at a glance
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
CELL SCIENCE AT A GLANCE
Actin assembly mechanisms at a glance
Klemens Rottner, Jan Faix, Sven Bogdan, Stefan Linder, Eugen Kerkhoff
Journal of Cell Science 2017 130: 3427-3435; doi: 10.1242/jcs.206433
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
CELL SCIENCE AT A GLANCE
Actin assembly mechanisms at a glance
Klemens Rottner, Jan Faix, Sven Bogdan, Stefan Linder, Eugen Kerkhoff
Journal of Cell Science 2017 130: 3427-3435; doi: 10.1242/jcs.206433

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction
    • The regulation of cell edge protrusions: lamellipodia and filopodia
    • Invadosomes
    • Cell cortex
    • Stress fibres and contractile ring
    • Actin assembly in intracellular membrane organization and dynamics
    • Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Cargo transport through the nuclear pore complex at a glance
  • Translation initiation in cancer at a glance
  • Tumour-directed microenvironment remodelling at a glance
Show more CELL SCIENCE AT A GLANCE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992