Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
CELL SCIENCE AT A GLANCE
The tubulin code at a glance
Sudarshan Gadadhar, Satish Bodakuntla, Kathiresan Natarajan, Carsten Janke
Journal of Cell Science 2017 130: 1347-1353; doi: 10.1242/jcs.199471
Sudarshan Gadadhar
1Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France
2Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Satish Bodakuntla
1Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France
2Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathiresan Natarajan
1Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France
2Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carsten Janke
1Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France
2Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Carsten Janke
  • For correspondence: Carsten.Janke@curie.fr
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF
Loading

ABSTRACT

Microtubules are key cytoskeletal elements of all eukaryotic cells and are assembled of evolutionarily conserved α-tubulin–β-tubulin heterodimers. Despite their uniform structure, microtubules fulfill a large diversity of functions. A regulatory mechanism to control the specialization of the microtubule cytoskeleton is the ‘tubulin code’, which is generated by (i) expression of different α- and β-tubulin isotypes, and by (ii) post-translational modifications of tubulin. In this Cell Science at a Glance article and the accompanying poster, we provide a comprehensive overview of the molecular components of the tubulin code, and discuss the mechanisms by which these components contribute to the generation of functionally specialized microtubules.

Introduction

Microtubules (MTs) are the largest filamentous components of the eukaryotic cytoskeleton and are essential for every cell as they control cell shape, division, motility and differentiation. MTs fulfill many of their functions by forming specific assemblies, such as the mitotic spindle to separate the chromosomes during cell division, and the axoneme to form cilia and flagella. MTs are dynamically assembled from evolutionarily highly conserved heterodimers of α- and β-tubulin. Considering the extraordinary conservation of α- and β-tubulins, one of the key challenges is to understand how these filaments can adapt to a huge variety of functions. MTs can functionally specialize by interacting with a variety of MT-associated proteins (MAPs). These proteins can regulate MT dynamics by either stabilizing or destabilizing them, and can generate forces (motor proteins) or connect MTs to other cellular structures, such as membranes or other cytoskeletal components. Furthermore, MTs can themselves be programmed by the ‘tubulin code’ – a combination of the differential expression of α- and β-tubulin genes (tubulin isotypes) and a plethora of post-translational modifications (PTMs) – to exert specific functions as presented in the accompanying poster. Here, we review the components and mechanisms of the tubulin code, and briefly discuss their potential role in controlling MT functions.

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Tubulin isotypes

MTs are highly conserved protein assemblies that show little structural variation throughout eukaryotic evolution. As their assembly is essentially driven by the spontaneous longitudinal and lateral association of α-tubulin–β-tubulin dimers, it is obvious that there is a restricted freedom for the evolution of the atomic structure of the tubulin dimers (Ludueña, 2013). Nevertheless, α- and β-tubulins are encoded by multiple genes in most organisms, giving rise to highly conserved but still different gene products that can form MTs (reviewed in Ludueña and Banerjee, 2008). In mammals, nine α-tubulin and nine β-tubulin genes have been identified, which have, regrettably, been given a confusing variety of names in the literature (for nomenclature see: www.genenames.org/cgi-bin/genefamilies/set/778). The expression and incorporation of different tubulin isotypes into the MT lattice can have two principal functions: (i) either the structure of the highly conserved core of the α- or β-tubulin protein is slightly altered, thus affecting assembly, dynamics and mechanical properties of MTs, or (ii) flexible regions, especially the C-terminal tails that decorate the surface of MTs, vary and thus may affect the interactions of MTs with MAPs and/or the PTMs that are generated on these tails.

Initially, tubulin isotypes were thought to form individual MTs with specialized functions in cells and tissues (Lewis et al., 1985), but this expectation has not been confirmed as different isotypes can freely intermingle into mosaic MTs (Lewis et al., 1987). Nevertheless, specialized MTs, such as axonemes (Raff et al., 2008), neuronal MTs (Joshi and Cleveland, 1989) and the MTs of the marginal band of platelets (Lecine et al., 2000; Schwer et al., 2001), are selectively enriched in specific β-tubulin isotypes, which might in part be responsible for the specific functions of these MTs. Less is known about the roles of α-tubulin isotypes, which in mammals show higher sequence conservation than the β-tubulins. One striking feature of the α-tubulin isotype TubA4A is that it does not contain the characteristic C-terminal tyrosine residue, and thus its expression could influence the tyrosination–detyrosination cycle in cells.

Molecular mechanisms of isotypes

So far, little is known regarding the impact of specific tubulin isotypes on MT properties and functions. Tubulin isotypes could affect the primary structure of tubulin dimers and thus the assembly dynamics, stability and also physical properties of MTs. To demonstrate this visually, we have modeled the structures of TubA1B with TubB2A, and TubA1B with TubB1, using the crystal structure of brain tubulin (PDB ID 3RYF) as a template. This overlay shows that some of the structural elements are differently positioned in TubB1, which is the most divergent of all mammalian tubulin isotypes. This suggests that incorporation of this isotype could indeed affect the properties of the MT lattice.

The discovery of disease-related mutations in tubulin isotypes (see Box 1) has provided the first insights into molecular mechanisms that could be regulated by these isotypes. The phenotypes generated by these mutations could be explained in different ways. One possibility is that single amino-acid replacements slightly alter the properties of tubulin, which can be tolerated in most MT functions but result in aberrations in some particularly challenging functions, such as long-range neuronal migration (discussed in Chakraborti et al., 2016). Indeed, single mutations in different isotypes can affect GTP hydrolysis and catastrophe rate of MTs (Geyer et al., 2015), as well as MT dynamic instability (Ti et al., 2016). Another proposed mechanism is that mutations in tubulin isotypes change MT dynamics in cells by inducing defects in chaperone-mediated folding and in the heterodimerization pathway of α- and β-tubulin (Keays et al., 2007; Tian et al., 2010, 2008), thus unbalancing the tubulin pool. Overall, the discovery of tubulin mutations has revealed that subtle alterations of the primary sequence of tubulins can have a strong impact on MT functions.

Box 1. Tubulin mutations

The discovery of mutations in specific tubulin isotypes in the past years has been instrumental in the efforts to better understand the functions of these isotypes in organisms and cells. For instance, mutations in TubB1, an isotype expressed specifically in platelets, invariably lead to bleeding disorders owing to dysfunctional or low numbers of platelets (Fiore et al., 2016; Kunishima et al., 2009, 2014). Similarly, mutations in the neuron-specific isotype TubB3 lead to neuronal disorders (Tischfield et al., 2010), and TubB8 mutations lead to impaired oocyte maturation, suggesting a specific role of this isotype in the germline (Feng et al., 2016).

A large number of mutations have been identified in broadly expressed tubulin isotypes, but strikingly, these mutations cause tissue- and cell-type-specific pathologies. For now, most of these mutations have been identified in neurodevelopmental or neurodegenerative disorders (reviewed in Tischfield et al., 2011). The reasons for these cell-type-specific effects remain unclear. One possibility is that these mutations introduce very subtle changes into the tubulin structure, which only marginally affect MT functions. These defects would only become apparent in cellular processes (such as neuronal migration) that essentially depend on fine-tuned MT dynamics (discussed in detail in Chakraborti et al., 2016). Even more intriguingly, mutations of different amino acid residues in the same tubulin isotype can have distinct pathological outcomes. Mutations of TubB4A, for instance, can affect either neurons or oligodendrocytes depending on the amino acid residue mutated (discussed in detail in Chakraborti et al., 2016).

Tubulin PTMs

The second component of the tubulin code is tubulin PTMs. Some of these PTMs, such as detyrosination–tyrosination, (poly)glutamylation and (poly)glycylation were initially discovered on tubulin and are therefore known as tubulin PTMs (Arce et al., 1975; Eddé et al., 1990; Hallak et al., 1977; Redeker et al., 1994). Although this holds true for tyrosination, which has been shown to be specific to α-tubulin owing to a unique structural fit between the enzyme tubulin tyrosine ligase (TTL) and tubulin (Prota et al., 2013), glutamylation and glycylation also occur on other substrates; however, so far, only a few of these have been identified (for example, see van Dijk et al., 2008). Other tubulin PTMs, such as acetylation, methylation and phosphorylation, are well-known protein PTMs that occur on a variety of substrates. Most, if not all, tubulin PTMs are generated on the MT polymer, thus allowing the generation of locally restricted and controlled marks on tubulin. Here, we present only the best-studied tubulin PTMs.

Detyrosination and tyrosination

Tyrosination is an ATP-dependent and tRNA-independent addition of tyrosine to tubulin (Arce et al., 1975) that is reversible (Hallak et al., 1977). Most α-tubulin genes are expressed with a gene-encoded C-terminal tyrosine residue, which is removed by detyrosination and re-added by tyrosination. Thus, it is the detyrosination step that initiates the detyrosination–tyrosination cycle. Detyrosinated tubulin was initially called ‘Glu-tubulin’ for its C-terminal glutamate residue; however, currently the term ‘detyr-tubulin’ is used to avoid confusion with glutamylated tubulin.

Tyrosination is catalyzed by TTL, the first tubulin-modifying enzyme to be purified (Murofushi, 1980; Schröder et al., 1985) and identified (Ersfeld et al., 1993). Surprisingly, the enzyme catalyzing detyrosination has not yet been discovered. An initial suggestion that detyrosination is mediated by cytosolic carboxypeptidase 1 (CCP1; also known as AGTPBP1) (Kalinina et al., 2007; Rodriguez de la Vega et al., 2007) has not been confirmed (Rogowski et al., 2010).

Δ2- and Δ3-tubulin

Following detyrosination, additional amino acid residues are removed from the C-terminal tail of α-tubulin to generate Δ2-tubulin (Paturle-Lafanechere et al., 1991) and Δ3-tubulin (Aillaud et al., 2016; Berezniuk et al., 2012). This process is catalyzed by enzymes of the CCP family (Kalinina et al., 2007; Kimura et al., 2010; Rodriguez de la Vega et al., 2007; Rogowski et al., 2010; Tort et al., 2014). Δ2-tubulin cannot undergo tyrosination (Paturle-Lafanechere et al., 1991; Rüdiger et al., 1994) and it has remained unclear whether the glutamate residue can be re-added to generate detyr-tubulin (Aillaud et al., 2016; Berezniuk et al., 2012).

Tubulin acetylation

The best-characterized acetylation site on tubulin is residue lysine 40 (K40) of α-tubulin (L'Hernault and Rosenbaum, 1985). K40 acetylation is catalyzed by the tubulin acetyl transferase αTAT1 (encoded by ATAT1 in mammals; MEC-17 in Caenorhabditis elegans) (Akella et al., 2010; Shida et al., 2010) and removed by histone deacetylase 6 (HDAC6) (Hubbert et al., 2002) or sirtuin 2 (SIRT2) (North et al., 2003). The acetylation of K40 is different from most other tubulin PTMs as it occurs in the lumen of MTs. Therefore, the modifying enzymes need to access the lumen to generate this modification, and the mechanism of luminal entry has recently been described for αTAT1 (Coombes et al., 2016; Ly et al., 2016).

Recent advances in proteomics have suggested the existence of additional acetylation sites on α- and β-tubulin (Choudhary et al., 2009; Liu et al., 2015); however, their distribution and functional roles remain to be studied. One confirmed acetylation event was found on lysine 252 (K252) of β-tubulin; it is catalyzed by the San acetyl transferase (encoded by NAA50) and expected to regulate MT polymerization (Chu et al., 2011).

Glutamylation and glycylation

(Poly)glutamylation and (poly)glycylation are PTMs that are generated by the enzymatic addition of one or more glutamate or glycine residues as branched peptide chains to the C-terminal tails of α- and/or β-tubulin (Eddé et al., 1990; Redeker et al., 1994). These PTMs are initiated by the addition of a glutamate or glycine to the γ-carboxyl group of one of the gene-encoded glutamate residues of the C-terminal tubulin tails, thus creating a branched peptide structure. Subsequent elongation of these branch chains then generates polyglutamylation or polyglycylation. Owing to this intrinsic complexity and the presence of multiple potential modification sites on α- and β-tubulins, polymodifications generate non-binary complex signals.

Glutamylases and glycylases are members of the TTL-like (TTLL) family. Each enzyme has a reaction and substrate preference and, therefore, initiating and elongating enzymes with preferences for either α- or β-tubulin exist (Janke et al., 2005; Rogowski et al., 2009; van Dijk et al., 2007; Wloga et al., 2009). Some enzymes appear to be highly specific for tubulin, whereas others have a range of substrates (Rogowski et al., 2009; van Dijk et al., 2008). Enzymes catalyzing the reverse reaction have so far only been found for glutamylation. Deglutamylases are members of the CCP family, which, similar to TTLLs, have preferential activities either to shorten long glutamate chains or remove glutamylation at the branching point (Kimura et al., 2010; Rogowski et al., 2010).

Other tubulin PTMs

Apart from the above-described well-characterized tubulin PTMs, there is a plethora of other PTMs – including phosphorylation, polyamination, palmitoylation, arginylation, ubiquitylation, glycosylation, sumoylation (reviewed in Janke and Bulinski, 2011) and methylation (Park et al., 2016) – that have been found on tubulin. So far, only few of them have been characterized in more detail. For instance, phosphorylation on serine 172 of β-tubulins, which is catalyzed by the cyclin-dependent kinase Cdk1, has been shown to affect MT assembly (Fourest-Lieuvin et al., 2006). The recently discovered methylation of K40 (Park et al., 2016) is highly intriguing as it provides a PTM that competes with the well-known acetylation of this site. Polyamination is also a newly identified polymodification that adds positively charged branch chains to glutamine residues of tubulin and is involved in the stabilization of MTs (Song et al., 2013).

Molecular mechanisms controlled by tubulin PTMs

Most of the better-studied tubulin PTMs are found within the C-terminal tails of α- and/or β-tubulin. These tails are exposed to the outer surface of assembled MTs and are key interaction sites for MAPs. It is thus obvious that these PTMs can influence, potentially in a selective manner, the interactions between MTs and MAPs. Moreover, the primary sequence of C-terminal tails varies between different tubulin isotypes, providing another layer of complexity to this regulatory mechanism.

Detyrosination has been demonstrated to regulate the molecular motors kinesin-1 (Dunn et al., 2008; Kaul et al., 2014; Konishi and Setou, 2009; Kreitzer et al., 1999; Liao and Gundersen, 1998), kinesin-2 (Sirajuddin et al., 2014) and CENP-E (Barisic et al., 2015). Moreover, detyrosination prevents the kinesin-13 motors MCAK (also known as Kif2C) and Kif2A from disassembling MTs (Peris et al., 2009), thus providing a mechanism by which detyrosination could regulate MT stability. Tyrosination also has a strong effect on the processivity of dynein in complex with dynactin and BicD2 (McKenney et al., 2016). Moreover, the tyrosination status of MTs controls the interaction with some plus-end tracking proteins, such as the cytoplasmic linker protein 170 (CLIP170; encoded by CLIP1) (Bieling et al., 2008; Nirschl et al., 2016; Peris et al., 2006).

Equally, polyglutamylation has been demonstrated to regulate the interactions of MTs with a range of MAPs. Initial blot-overlay experiments have suggested that polyglutamylation selectively regulates some neuronal MAPs, such as tau (encoded by MAPT), MAP2, MAP1A and MAP1B (Bonnet et al., 2001; Boucher et al., 1994), whereas other MAPs, such as MAP6, were unaffected (Bonnet et al., 2002). More recent work using chimeric tubulins that mimic polyglutamylation suggests that kinesin-1 is sensitive to polyglutamylation (Sirajuddin et al., 2014). This confirmed the earlier observation that polyglutamylation regulates kinesin-1-dependent transport of postsynaptic cargos in neurons (Maas et al., 2009). Polyglutamylation also regulates flagellar dynein motors, as modulation of this PTM in vivo leads to altered ciliary beating (Kubo et al., 2010; Suryavanshi et al., 2010). Moreover, polyglutamylation influences MT dynamics by regulating the activity of the MT-severing enzyme spastin (Lacroix et al., 2010; Valenstein and Roll-Mecak, 2016). So far, no molecular mechanism through which polyglycylation controls MT functions has been identified.

The mechanisms by which acetylation of residue K40 controls MT functions have so far remained ambiguous. As K40 is positioned at the luminal face of MTs, it could potentially regulate the interaction with MT inner proteins (MIPs) (Linck et al., 2014) or MT lattice interactions, and thus MT dynamics. Indeed, in C. elegans touch receptor neurons, the organization of the particular 15-protofilament MTs depends on K40 acetylation (Cueva et al., 2012; Topalidou et al., 2012). In contrast, the ultrastructure of mammalian 13-protofilament MTs is unaffected by K40 acetylation (Howes et al., 2014).

Strikingly, alteration of tubulin acetylation in cells affects intracellular transport driven by kinesin-1 or dynein (Dompierre et al., 2007; Reed et al., 2006). However, a direct regulation of kinesin-1 motility by K40 acetylation of tubulin has not been confirmed in vitro (Kaul et al., 2014; Walter et al., 2012), suggesting that other mechanisms contribute to the transport phenotype observed in cells.

Functions of the tubulin code in health and disease

The tubulin code is expected to adapt MTs to specialized cellular functions. So far, the incorporation of specific tubulin isotypes has been found in a few specialized MT structures and cells. In mammals, for instance, TubB1 is expressed exclusively in platelets and megakaryocytes (Wang et al., 1986), and is essential for their function (see Box 1). Apart from TubB1, TubB3 and TubB4 have also been found in specific tissues and structures – TubB3 is most prominent in neurons (Denoulet et al., 1986; Joshi and Cleveland, 1989; Lewis et al., 1985), whereas TubB4 is particularly enriched in the axonemes of cilia and flagella (Renthal et al., 1993). A striking example of isotype specialization is found in the nematode C. elegans. In this organism, MTs usually comprise 11 protofilaments, whereas in touch receptor neurons, the tubulin isotypes MEC-12 (α-tubulin) and MEC-7 (β-tubulin) assemble into 15-protofilament MTs that are essential for the function of these neurons (Fukushige et al., 1999; Lockhead et al., 2016; Savage et al., 1989).

Considering the specialized functions of certain tubulin isotypes, changes in their expression levels could influence the properties of the MTs and thus alter MT functions in cells. For instance, differential isotype expression has been observed in various cancers (reviewed in Parker et al., 2014) and could be involved in rendering these cancers more resistant to therapeutic drugs (Kamath et al., 2005; Leandro-Garcia et al., 2012; Yang et al., 2016).

Similar to changes in isotype expression, point mutations in tubulin isotypes could alter the properties and, thus, the functions of MTs. Indeed, tubulin mutations are linked to a wide spectrum of human pathologies (see Box 1).

Tubulin PTMs are differentially distributed on functionally distinct MTs and are mostly enriched on stable long-lived MTs, such as neuronal, axonemal and centriolar MTs. Furthermore, detyrosination preferentially occurs on a subset of MTs in the mitotic spindle (Geuens et al., 1986; Gundersen and Bulinski, 1986), as well as on neuronal MTs (Brown et al., 1993; Cambray-Deakin and Burgoyne, 1987; Robson and Burgoyne, 1989). Deregulation of the detyrosination–tyrosination cycle has been shown to influence tumorigenesis (Kato et al., 2004; Lafanechere et al., 1998; Mialhe et al., 2001; Souček et al., 2006), affect neuronal differentiation (Erck et al., 2005; Marcos et al., 2009) and impede proper chromosome segregation during mitosis (Barisic et al., 2015). Furthermore, detyrosination is an important regulator of cardiac muscle function (Kerr et al., 2015; Robison et al., 2016).

The specific role of K40 acetylation is not yet fully understood. Acetylation has been associated with stable MTs and thus used as a marker for MT stability. So far, it has been shown to have a role in the maturation of megakaryocytes and platelet formation (Iancu-Rubin et al., 2012; Sadoul et al., 2012) and to be essential for touch-sensing in mice (Morley et al., 2016) and C. elegans (Topalidou et al., 2012).

Glutamylation occurs on neuronal MTs during neuronal differentiation (Audebert et al., 1993, 1994). Balanced levels of polyglutamylation in neurons play an essential role in neuronal survival (Rogowski et al., 2010). Glutamylation is further enriched on mitotic spindles and midbodies (Bobinnec et al., 1998b; Lacroix et al., 2010), where it could have a role in the control of the cell cycle. Centrioles and basal bodies are hotspots of polyglutamylation (Bobinnec et al., 1998b; Geimer et al., 1997), and blocking this PTM with anti-glutamylation antibodies results in the disassembly of centrioles (Bobinnec et al., 1998a). Moreover, polyglutamylation is prominent on ciliary and flagellar axonemes (Bré et al., 1994; Fouquet et al., 1994; O'Hagan et al., 2011), where it regulates the beating behavior and integrity of these organelles (reviewed in Konno et al., 2012). In contrast to glutamylation, glycylation has so far been exclusively observed on axonemal MTs (Bré et al., 1996; Redeker et al., 1994; Rüdiger et al., 1995; Weber et al., 1996; Xia et al., 2000) and has been implicated in the mechanical stabilization of the axoneme (Pathak et al., 2011; Rogowski et al., 2009; Wloga et al., 2009).

Conclusions and perspectives

After decades of research, the mechanisms and functions of the ‘tubulin code’ have only just begun to be unraveled. Some insights at the organism level have already been gained as knockout mice for tubulin-modifying enzymes show a variety of phenotypes, and tubulin mutations (see Box 1) are found in a range of human pathologies. To determine the roles of the tubulin code at the cellular level, it will be important to establish cell biology approaches that are sensitive enough to reveal the impact of subtle alterations in MT behavior. Another great challenge in the field is the development of methods to produce tubulin ‘à la carte’ – i.e. recombinant tubulin with controlled PTMs – in order to study the mechanisms of the tubulin code in vitro. The first exciting advances in this direction have recently been made (Barisic et al., 2015; Minoura et al., 2013; Pamula et al., 2016; Sirajuddin et al., 2014; Vemu et al., 2016).

Taken together, it appears that the tubulin code controls physiological processes through a plethora of mechanisms. Disruption of these processes can lead to diseases such as ciliopathies, cancer and neurodegeneration. Thus, understanding the molecular mechanisms of the tubulin code and their impact on physiology is the key challenge for the coming years.

Acknowledgements

We are grateful to Jijumon A.S., M.M. Magiera and P. Singh for insightful discussions. We would like to apologize to the authors of the publications that could not be cited due to space restrictions; in these cases, we cited reviews that cite their original work.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Funding

    This work has received support under the program ‘Investissements d'Avenir’ launched by the French Government and implemented by Agence Nationale de la Recherche (ANR) (ANR-10-LBX-0038, ANR-10-IDEX-0001-02 PSL★). The work was further supported by the ANR grant ANR-12-BSV2-0007; and the Institut National Du Cancer grants INCA 2013-1-PLBIO-02-ICR-1 and 2014-PLBIO-11-ICR-1. K.N. is supported by the Fondation pour la Recherche Médicale (FRM) fellowship SPF20140129173.

  • Cell science at a glance

    A high-resolution version of the poster and individual poster panels are available for downloading at http://jcs.biologists.org/lookup/doi/10.1242/jcs.199471.supplemental

  • © 2017. Published by The Company of Biologists Ltd

References

  1. ↵
    1. Aillaud, C.,
    2. Bosc, C.,
    3. Saoudi, Y.,
    4. Denarier, E.,
    5. Peris, L.,
    6. Sago, L.,
    7. Taulet, N.,
    8. Cieren, A.,
    9. Tort, O.,
    10. Magiera, M. M. et al.
    (2016). Evidence for new C-terminally truncated variants of alpha- and beta-tubulins. Mol. Biol. Cell 27, 640-653. doi:10.1091/mbc.E15-03-0137
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Akella, J. S.,
    2. Wloga, D.,
    3. Kim, J.,
    4. Starostina, N. G.,
    5. Lyons-Abbott, S.,
    6. Morrissette, N. S.,
    7. Dougan, S. T.,
    8. Kipreos, E. T. and
    9. Gaertig, J.
    (2010). MEC-17 is an alpha-tubulin acetyltransferase. Nature 467, 218-222. doi:10.1038/nature09324
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Arce, C. A.,
    2. Rodriguez, J. A.,
    3. Barra, H. S. and
    4. Caputto, R.
    (1975). Incorporation of L-tyrosine, L-phenylalanine and L-3,4-dihydroxyphenylalanine as single units into rat brain tubulin. Eur. J. Biochem. 59, 145-149. doi:10.1111/j.1432-1033.1975.tb02435.x
    OpenUrlCrossRefPubMedWeb of Science
  4. ↵
    1. Audebert, S.,
    2. Desbruyeres, E.,
    3. Gruszczynski, C.,
    4. Koulakoff, A.,
    5. Gros, F.,
    6. Denoulet, P. and
    7. Eddé, B.
    (1993). Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons. Mol. Biol. Cell 4, 615-626. doi:10.1091/mbc.4.6.615
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Audebert, S.,
    2. Koulakoff, A.,
    3. Berwald-Netter, Y.,
    4. Gros, F.,
    5. Denoulet, P. and
    6. Eddé, B.
    (1994). Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain neurons. J. Cell Sci. 107, 2313-2322.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Barisic, M.,
    2. Silva e Sousa, R.,
    3. Tripathy, S. K.,
    4. Magiera, M. M.,
    5. Zaytsev, A. V.,
    6. Pereira, A. L.,
    7. Janke, C.,
    8. Grishchuk, E. L. and
    9. Maiato, H.
    (2015). Microtubule detyrosination guides chromosomes during mitosis. Science 348, 799-803. doi:10.1126/science.aaa5175
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Berezniuk, I.,
    2. Vu, H. T.,
    3. Lyons, P. J.,
    4. Sironi, J. J.,
    5. Xiao, H.,
    6. Burd, B.,
    7. Setou, M.,
    8. Angeletti, R. H.,
    9. Ikegami, K. and
    10. Fricker, L. D.
    (2012). Cytosolic carboxypeptidase 1 is involved in processing alpha- and beta-Tubulin. J. Biol. Chem. 287, 6503-6517. doi:10.1074/jbc.M111.309138
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Bieling, P.,
    2. Kandels-Lewis, S.,
    3. Telley, I. A.,
    4. van Dijk, J.,
    5. Janke, C. and
    6. Surrey, T.
    (2008). CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183, 1223-1233. doi:10.1083/jcb.200809190
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Bobinnec, Y.,
    2. Khodjakov, A.,
    3. Mir, L. M.,
    4. Rieder, C. L.,
    5. Eddé, B. and
    6. Bornens, M.
    (1998a). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575-1589. doi:10.1083/jcb.143.6.1575
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Bobinnec, Y.,
    2. Moudjou, M.,
    3. Fouquet, J. P.,
    4. Desbruyères, E.,
    5. Eddé, B. and
    6. Bornens, M.
    (1998b). Glutamylation of centriole and cytoplasmic tubulin in proliferating non- neuronal cells. Cell Motil. Cytoskeleton 39, 223-232. doi:10.1002/(SICI)1097-0169(1998)39:3<223::AID-CM5%3.0.CO;2-5
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    1. Bonnet, C.,
    2. Boucher, D.,
    3. Lazereg, S.,
    4. Pedrotti, B.,
    5. Islam, K.,
    6. Denoulet, P. and
    7. Larcher, J. C.
    (2001). Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J. Biol. Chem. 276, 12839-12848. doi:10.1074/jbc.M011380200
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Bonnet, C.,
    2. Denarier, E.,
    3. Bosc, C.,
    4. Lazereg, S.,
    5. Denoulet, P. and
    6. Larcher, J.-C.
    (2002). Interaction of STOP with neuronal tubulin is independent of polyglutamylation. Biochem. Biophys. Res. Commun. 297, 787-793. doi:10.1016/S0006-291X(02)02294-5
    OpenUrlCrossRefPubMed
  13. ↵
    1. Boucher, D.,
    2. Larcher, J.-C.,
    3. Gros, F. and
    4. Denoulet, P.
    (1994). Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry 33, 12471-12477. doi:10.1021/bi00207a014
    OpenUrlCrossRefPubMed
  14. ↵
    1. Bré, M. H.,
    2. de Néchaud, B.,
    3. Wolff, A. and
    4. Fleury, A.
    (1994). Glutamylated tubulin probed in ciliates with the monoclonal antibody GT335. Cell Motil. Cytoskeleton 27, 337-349. doi:10.1002/cm.970270406
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    1. Bré, M. H.,
    2. Redeker, V.,
    3. Quibell, M.,
    4. Darmanaden-Delorme, J.,
    5. Bressac, C.,
    6. Cosson, J.,
    7. Huitorel, P.,
    8. Schmitter, J. M.,
    9. Rossier, J.,
    10. Johnson, T. et al.
    (1996). Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J. Cell Sci. 109, 727-738.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Brown, A.,
    2. Li, Y.,
    3. Slaughter, T. and
    4. Black, M. M.
    (1993). Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci. 104, 339-352.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Cambray-Deakin, M. A. and
    2. Burgoyne, R. D.
    (1987). Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum. J. Cell Biol. 104, 1569-1574. doi:10.1083/jcb.104.6.1569
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Chakraborti, S.,
    2. Natarajan, K.,
    3. Curiel, J.,
    4. Janke, C. and
    5. Liu, J.
    (2016). The emerging role of the tubulin code: from the tubulin molecule to neuronal function and disease. Cytoskeleton 73, 521-550. doi:10.1002/cm.21290
    OpenUrlCrossRef
  19. ↵
    1. Choudhary, C.,
    2. Kumar, C.,
    3. Gnad, F.,
    4. Nielsen, M. L.,
    5. Rehman, M.,
    6. Walther, T. C.,
    7. Olsen, J. V. and
    8. Mann, M.
    (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840. doi:10.1126/science.1175371
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Chu, C.-W.,
    2. Hou, F.,
    3. Zhang, J.,
    4. Phu, L.,
    5. Loktev, A. V.,
    6. Kirkpatrick, D. S.,
    7. Jackson, P. K.,
    8. Zhao, Y. and
    9. Zou, H.
    (2011). A novel acetylation of beta-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol. Biol. Cell 22, 448-456. doi:10.1091/mbc.E10-03-0203
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Coombes, C.,
    2. Yamamoto, A.,
    3. McClellan, M.,
    4. Reid, T. A.,
    5. Plooster, M.,
    6. Luxton, G. W. G.,
    7. Alper, J.,
    8. Howard, J. and
    9. Gardner, M. K.
    (2016). Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1. Proc. Natl. Acad. Sci. USA 113, E7176-E7184. doi:10.1073/pnas.1605397113
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Cueva, J. G.,
    2. Hsin, J.,
    3. Huang, K. C. and
    4. Goodman, M. B.
    (2012). Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr. Biol. 22, 1066-1074. doi:10.1016/j.cub.2012.05.012
    OpenUrlCrossRefPubMed
  23. ↵
    1. Denoulet, P.,
    2. Eddé, B. and
    3. Gros, F.
    (1986). Differential expression of several neurospecific beta-tubulin mRNAs in the mouse brain during development. Gene 50, 289-297. doi:10.1016/0378-1119(86)90333-1
    OpenUrlCrossRefPubMedWeb of Science
  24. ↵
    1. Dompierre, J. P.,
    2. Godin, J. D.,
    3. Charrin, B. C.,
    4. Cordelieres, F. P.,
    5. King, S. J.,
    6. Humbert, S. and
    7. Saudou, F.
    (2007). Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571-3583. doi:10.1523/JNEUROSCI.0037-07.2007
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Dunn, S.,
    2. Morrison, E. E.,
    3. Liverpool, T. B.,
    4. Molina-Paris, C.,
    5. Cross, R. A.,
    6. Alonso, M. C. and
    7. Peckham, M.
    (2008). Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121, 1085-1095. doi:10.1242/jcs.026492
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Eddé, B.,
    2. Rossier, J.,
    3. Le Caer, J. P.,
    4. Desbruyeres, E.,
    5. Gros, F. and
    6. Denoulet, P.
    (1990). Posttranslational glutamylation of alpha-tubulin. Science 247, 83-85. doi:10.1126/science.1967194
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Erck, C.,
    2. Peris, L.,
    3. Andrieux, A.,
    4. Meissirel, C.,
    5. Gruber, A. D.,
    6. Vernet, M.,
    7. Schweitzer, A.,
    8. Saoudi, Y.,
    9. Pointu, H.,
    10. Bosc, C. et al.
    (2005). A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl. Acad. Sci. USA 102, 7853-7858. doi:10.1073/pnas.0409626102
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Ersfeld, K.,
    2. Wehland, J.,
    3. Plessmann, U.,
    4. Dodemont, H.,
    5. Gerke, V. and
    6. Weber, K.
    (1993). Characterization of the tubulin-tyrosine ligase. J. Cell Biol. 120, 725-732. doi:10.1083/jcb.120.3.725
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Feng, R.,
    2. Sang, Q.,
    3. Kuang, Y.,
    4. Sun, X.,
    5. Yan, Z.,
    6. Zhang, S.,
    7. Shi, J.,
    8. Tian, G.,
    9. Luchniak, A.,
    10. Fukuda, Y. et al.
    (2016). Mutations in TUBB8 and human oocyte meiotic arrest. N. Engl. J. Med. 374, 223-232. doi:10.1056/NEJMoa1510791
    OpenUrlCrossRefPubMed
  30. ↵
    1. Fiore, M.,
    2. Goulas, C. and
    3. Pillois, X.
    (2016). A new mutation in TUBB1 associated with thrombocytopenia confirms that C-terminal part of beta1-tubulin plays a role in microtubule assembly. Clin. Genet. doi:10.1111/cge.12879
    OpenUrlCrossRef
  31. ↵
    1. Fouquet, J.-P.,
    2. Eddé, B.,
    3. Kann, M.-L.,
    4. Wolff, A.,
    5. Desbruyeres, E. and
    6. Denoulet, P.
    (1994). Differential distribution of glutamylated tubulin during spermatogenesis in mammalian testis. Cell Motil. Cytoskeleton 27, 49-58. doi:10.1002/cm.970270106
    OpenUrlCrossRefPubMed
  32. ↵
    1. Fourest-Lieuvin, A.,
    2. Peris, L.,
    3. Gache, V.,
    4. Garcia-Saez, I.,
    5. Juillan-Binard, C.,
    6. Lantez, V. and
    7. Job, D.
    (2006). Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell 17, 1041-1050. doi:10.1091/mbc.E05-07-0621
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Fukushige, T.,
    2. Siddiqui, Z. K.,
    3. Chou, M.,
    4. Culotti, J. G.,
    5. Gogonea, C. B.,
    6. Siddiqui, S. S. and
    7. Hamelin, M.
    (1999). MEC-12, an alpha-tubulin required for touch sensitivity in C. elegans. J. Cell Sci. 112, 395-403.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Geimer, S.,
    2. Teltenkötter, A.,
    3. Plessmann, U.,
    4. Weber, K. and
    5. Lechtreck, K. F.
    (1997). Purification and characterization of basal apparatuses from a flagellate green alga. Cell Motil. Cytoskeleton 37, 72-85. doi:10.1002/(SICI)1097-0169(1997)37:1<72::AID-CM7%3.0.CO;2-J
    OpenUrlCrossRefPubMed
  35. ↵
    1. Geuens, G.,
    2. Gundersen, G. G.,
    3. Nuydens, R.,
    4. Cornelissen, F.,
    5. Bulinski, J. C. and
    6. DeBrabander, M.
    (1986). Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J. Cell Biol. 103, 1883-1893. doi:10.1083/jcb.103.5.1883
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Geyer, E. A.,
    2. Burns, A.,
    3. Lalonde, B. A.,
    4. Ye, X.,
    5. Piedra, F.-A.,
    6. Huffaker, T. C. and
    7. Rice, L. M.
    (2015). A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. Elife 4, e10113. doi:10.7554/eLife.10113
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Gundersen, G. G. and
    2. Bulinski, J. C.
    (1986). Distribution of tyrosinated and nontyrosinated alpha-tubulin during mitosis. J. Cell Biol. 102, 1118-1126. doi:10.1083/jcb.102.3.1118
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Hallak, M. E.,
    2. Rodriguez, J. A.,
    3. Barra, H. S. and
    4. Caputto, R.
    (1977). Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin. FEBS Lett. 73, 147-150. doi:10.1016/0014-5793(77)80968-X
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. Howes, S. C.,
    2. Alushin, G. M.,
    3. Shida, T.,
    4. Nachury, M. V. and
    5. Nogales, E.
    (2014). Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol. Biol. Cell 25, 257-266. doi:10.1091/mbc.E13-07-0387
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Hubbert, C.,
    2. Guardiola, A.,
    3. Shao, R.,
    4. Kawaguchi, Y.,
    5. Ito, A.,
    6. Nixon, A.,
    7. Yoshida, M.,
    8. Wang, X.-F. and
    9. Yao, T.-P.
    (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458. doi:10.1038/417455a
    OpenUrlCrossRefPubMedWeb of Science
  41. ↵
    1. Iancu-Rubin, C.,
    2. Gajzer, D.,
    3. Mosoyan, G.,
    4. Feller, F.,
    5. Mascarenhas, J. and
    6. Hoffman, R.
    (2012). Panobinostat (LBH589)-induced acetylation of tubulin impairs megakaryocyte maturation and platelet formation. Exp. Hematol. 40, 564-574. doi:10.1016/j.exphem.2012.02.004
    OpenUrlCrossRefPubMed
  42. ↵
    1. Janke, C. and
    2. Bulinski, J. C.
    (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773-786. doi:10.1038/nrm3227
    OpenUrlCrossRefPubMed
  43. ↵
    1. Janke, C.,
    2. Rogowski, K.,
    3. Wloga, D.,
    4. Regnard, C.,
    5. Kajava, A. V.,
    6. Strub, J.-M.,
    7. Temurak, N.,
    8. van Dijk, J.,
    9. Boucher, D.,
    10. van Dorsselaer, A. et al.
    (2005). Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758-1762. doi:10.1126/science.1113010
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Joshi, H. C. and
    2. Cleveland, D. W.
    (1989). Differential utilization of beta-tubulin isotypes in differentiating neurites. J. Cell Biol. 109, 663-673. doi:10.1083/jcb.109.2.663
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Kalinina, E.,
    2. Biswas, R.,
    3. Berezniuk, I.,
    4. Hermoso, A.,
    5. Aviles, F. X. and
    6. Fricker, L. D.
    (2007). A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J. 21, 836-850. doi:10.1096/fj.06-7329com
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Kamath, K.,
    2. Wilson, L.,
    3. Cabral, F. and
    4. Jordan, M. A.
    (2005). BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J. Biol. Chem. 280, 12902-12907. doi:10.1074/jbc.M414477200
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Kato, C.,
    2. Miyazaki, K.,
    3. Nakagawa, A.,
    4. Ohira, M.,
    5. Nakamura, Y.,
    6. Ozaki, T.,
    7. Imai, T. and
    8. Nakagawara, A.
    (2004). Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int. J. Cancer 112, 365-375. doi:10.1002/ijc.20431
    OpenUrlCrossRefPubMedWeb of Science
  48. ↵
    1. Kaul, N.,
    2. Soppina, V. and
    3. Verhey, K. J.
    (2014). Effects of alpha-Tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys. J. 106, 2636-2643. doi:10.1016/j.bpj.2014.05.008
    OpenUrlCrossRefPubMed
  49. ↵
    1. Keays, D. A.,
    2. Tian, G.,
    3. Poirier, K.,
    4. Huang, G.-J.,
    5. Siebold, C.,
    6. Cleak, J.,
    7. Oliver, P. L.,
    8. Fray, M.,
    9. Harvey, R. J.,
    10. Molnar, Z. et al.
    (2007). Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128, 45-57. doi:10.1016/j.cell.2006.12.017
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    1. Kerr, J. P.,
    2. Robison, P.,
    3. Shi, G.,
    4. Bogush, A. I.,
    5. Kempema, A. M.,
    6. Hexum, J. K.,
    7. Becerra, N.,
    8. Harki, D. A.,
    9. Martin, S. S.,
    10. Raiteri, R. et al.
    (2015). Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat. Commun. 6, 8526. doi:10.1038/ncomms9526
    OpenUrlCrossRefPubMed
  51. ↵
    1. Kimura, Y.,
    2. Kurabe, N.,
    3. Ikegami, K.,
    4. Tsutsumi, K.,
    5. Konishi, Y.,
    6. Kaplan, O. I.,
    7. Kunitomo, H.,
    8. Iino, Y.,
    9. Blacque, O. E. and
    10. Setou, M.
    (2010). Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J. Biol. Chem. 285, 22936-22941. doi:10.1074/jbc.C110.128280
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Konishi, Y. and
    2. Setou, M.
    (2009). Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559-567. doi:10.1038/nn.2314
    OpenUrlCrossRefPubMedWeb of Science
  53. ↵
    1. Konno, A.,
    2. Setou, M. and
    3. Ikegami, K.
    (2012). Ciliary and flagellar structure and function-their regulations by posttranslational modifications of axonemal tubulin. Int. Rev. Cell Mol. Biol. 294, 133-170. doi:10.1016/B978-0-12-394305-7.00003-3
    OpenUrlCrossRefPubMed
  54. ↵
    1. Kreitzer, G.,
    2. Liao, G. and
    3. Gundersen, G. G.
    (1999). Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10, 1105-1118. doi:10.1091/mbc.10.4.1105
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Kubo, T.,
    2. Yanagisawa, H.-a.,
    3. Yagi, T.,
    4. Hirono, M. and
    5. Kamiya, R.
    (2010). Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr. Biol. 20, 441-445. doi:10.1016/j.cub.2009.12.058
    OpenUrlCrossRefPubMedWeb of Science
  56. ↵
    1. Kunishima, S.,
    2. Kobayashi, R.,
    3. Itoh, T. J.,
    4. Hamaguchi, M. and
    5. Saito, H.
    (2009). Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 113, 458-461. doi:10.1182/blood-2008-06-162610
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Kunishima, S.,
    2. Nishimura, S.,
    3. Suzuki, H.,
    4. Imaizumi, M. and
    5. Saito, H.
    (2014). TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia. Eur. J. Haematol. 92, 276-282. doi:10.1111/ejh.12252
    OpenUrlCrossRefPubMed
  58. ↵
    1. Lacroix, B.,
    2. van Dijk, J.,
    3. Gold, N. D.,
    4. Guizetti, J.,
    5. Aldrian-Herrada, G.,
    6. Rogowski, K.,
    7. Gerlich, D. W. and
    8. Janke, C.
    (2010). Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 189, 945-954. doi:10.1083/jcb.201001024
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Lafanechere, L.,
    2. Courtay-Cahen, C.,
    3. Kawakami, T.,
    4. Jacrot, M.,
    5. Rüdiger, M.,
    6. Wehland, J.,
    7. Job, D. and
    8. Margolis, R. L.
    (1998). Suppression of tubulin tyrosine ligase during tumor growth. J. Cell Sci. 111, 171-181.
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Leandro-Garcia, L. J.,
    2. Leskela, S.,
    3. Inglada-Perez, L.,
    4. Landa, I.,
    5. de Cubas, A. A.,
    6. Maliszewska, A.,
    7. Comino-Mendez, I.,
    8. Leton, R.,
    9. Gomez-Grana, A.,
    10. Torres, R. et al.
    (2012). Hematologic beta-tubulin VI isoform exhibits genetic variability that influences paclitaxel toxicity. Cancer Res. 72, 4744-4752. doi:10.1158/0008-5472.CAN-11-2861
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Lecine, P.,
    2. Italiano, J. E., Jr.,
    3. Kim, S. W.,
    4. Villeval, J. L. and
    5. Shivdasani, R. A.
    (2000). Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 96, 1366-1373.
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Lewis, S. A.,
    2. Lee, M. G. and
    3. Cowan, N. J.
    (1985). Five mouse tubulin isotypes and their regulated expression during development. J. Cell Biol. 101, 852-861. doi:10.1083/jcb.101.3.852
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Lewis, S. A.,
    2. Gu, W. and
    3. Cowan, N. J.
    (1987). Free intermingling of mammalian beta-tubulin isotypes among functionally distinct microtubules. Cell 49, 539-548. doi:10.1016/0092-8674(87)90456-9
    OpenUrlCrossRefPubMedWeb of Science
  64. ↵
    1. L'Hernault, S. W. and
    2. Rosenbaum, J. L.
    (1985). Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 24, 473-478. doi:10.1021/bi00323a034
    OpenUrlCrossRefPubMed
  65. ↵
    1. Liao, G. and
    2. Gundersen, G. G.
    (1998). Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797-9803. doi:10.1074/jbc.273.16.9797
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Linck, R.,
    2. Fu, X.,
    3. Lin, J.,
    4. Ouch, C.,
    5. Schefter, A.,
    6. Steffen, W.,
    7. Warren, P. and
    8. Nicastro, D.
    (2014). Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins and stable protofilaments. J. Biol. Chem. 289, 17427-17444. doi:10.1074/jbc.M114.568949
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Liu, N.,
    2. Xiong, Y.,
    3. Li, S.,
    4. Ren, Y.,
    5. He, Q.,
    6. Gao, S.,
    7. Zhou, J. and
    8. Shui, W.
    (2015). New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry. Sci. Rep. 5, 16869. doi:10.1038/srep16869
    OpenUrlCrossRefPubMed
  68. ↵
    1. Lockhead, D.,
    2. Schwarz, E. M.,
    3. O'Hagan, R.,
    4. Bellotti, S.,
    5. Krieg, M.,
    6. Barr, M. M.,
    7. Dunn, A. R.,
    8. Sternberg, P. W. and
    9. Goodman, M. B.
    (2016). The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth. Mol. Biol. Cell. 27, 3717–3728. doi:10.1091/mbc.E16-06-0473
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Ludueña, R. F.
    (2013). A hypothesis on the origin and evolution of tubulin. Int. Rev. Cell Mol. Biol. 302, 41-185. doi:10.1016/B978-0-12-407699-0.00002-9
    OpenUrlCrossRefPubMed
  70. ↵
    1. Ludueña, R. F. and
    2. Banerjee, A.
    (2008). The isotypes of tubulin: distribution and functional significance. In Cancer Drug Discovery and Development: The Role of Microtubules in Cell Biology, Neurobiology, and Oncology (ed. A. T. Fojo), pp. 123-175. Totowa, NJ: Humana Press.
  71. ↵
    1. Ly, N.,
    2. Elkhatib, N.,
    3. Bresteau, E.,
    4. Pietrement, O.,
    5. Khaled, M.,
    6. Magiera, M. M.,
    7. Janke, C.,
    8. Le Cam, E.,
    9. Rutenberg, A. D. and
    10. Montagnac, G.
    (2016). alphaTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities. Sci. Rep. 6, 35624. doi:10.1038/srep35624
    OpenUrlCrossRef
  72. ↵
    1. Maas, C.,
    2. Belgardt, D.,
    3. Lee, H. K.,
    4. Heisler, F. F.,
    5. Lappe-Siefke, C.,
    6. Magiera, M. M.,
    7. van Dijk, J.,
    8. Hausrat, T. J.,
    9. Janke, C. and
    10. Kneussel, M.
    (2009). Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc. Natl. Acad. Sci. USA 106, 8731-8736. doi:10.1073/pnas.0812391106
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Marcos, S.,
    2. Moreau, J.,
    3. Backer, S.,
    4. Job, D.,
    5. Andrieux, A. and
    6. Bloch-Gallego, E.
    (2009). Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS ONE 4, e5405. doi:10.1371/journal.pone.0005405
    OpenUrlCrossRefPubMed
  74. ↵
    1. McKenney, R. J.,
    2. Huynh, W.,
    3. Vale, R. D. and
    4. Sirajuddin, M.
    (2016). Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J. 35, 1175-1185. doi:10.15252/embj.201593071
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Mialhe, A.,
    2. Lafanechere, L.,
    3. Treilleux, I.,
    4. Peloux, N.,
    5. Dumontet, C.,
    6. Bremond, A.,
    7. Panh, M. H.,
    8. Payan, R.,
    9. Wehland, J.,
    10. Margolis, R. L. et al.
    (2001). Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61, 5024-5027.
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Minoura, I.,
    2. Hachikubo, Y.,
    3. Yamakita, Y.,
    4. Takazaki, H.,
    5. Ayukawa, R.,
    6. Uchimura, S. and
    7. Muto, E.
    (2013). Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 587, 3450-3455. doi:10.1016/j.febslet.2013.08.032
    OpenUrlCrossRefPubMed
  77. ↵
    1. Morley, S. J.,
    2. Qi, Y.,
    3. Iovino, L.,
    4. Andolfi, L.,
    5. Guo, D.,
    6. Kalebic, N.,
    7. Castaldi, L.,
    8. Tischer, C.,
    9. Portulano, C.,
    10. Bolasco, G. et al.
    (2016). Acetylated tubulin is essential for touch sensation in mice. Elife 5, e20813. doi:10.7554/eLife.20813
    OpenUrlCrossRef
  78. ↵
    1. Murofushi, H.
    (1980). Purification and characterization of tubulin-tyrosine ligase from porcine brain. J. Biochem. 87, 979-984. doi:10.1093/oxfordjournals.jbchem.a132828
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Nirschl, J. J.,
    2. Magiera, M. M.,
    3. Lazarus, J. E.,
    4. Janke, C. and
    5. Holzbaur, E. L. F.
    (2016). alpha-tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep 14, 2637-2652. doi:10.1016/j.celrep.2016.02.046
    OpenUrlCrossRefPubMed
  80. ↵
    1. North, B. J.,
    2. Marshall, B. L.,
    3. Borra, M. T.,
    4. Denu, J. M. and
    5. Verdin, E.
    (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437-444. doi:10.1016/S1097-2765(03)00038-8
    OpenUrlCrossRefPubMedWeb of Science
  81. ↵
    1. O'Hagan, R.,
    2. Piasecki, B. P.,
    3. Silva, M.,
    4. Phirke, P.,
    5. Nguyen, K. C. Q.,
    6. Hall, D. H.,
    7. Swoboda, P. and
    8. Barr, M. M.
    (2011). The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Curr. Biol. 21, 1685-1694. doi:10.1016/j.cub.2011.08.049
    OpenUrlCrossRefPubMed
  82. ↵
    1. Pamula, M. C.,
    2. Ti, S.-C. and
    3. Kapoor, T. M.
    (2016). The structured core of human beta tubulin confers isotype-specific polymerization properties. J. Cell Biol. 213, 425-433. doi:10.1083/jcb.201603050
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Park, I. Y.,
    2. Powell, R. T.,
    3. Tripathi, D. N.,
    4. Dere, R.,
    5. Ho, T. H.,
    6. Blasius, T. L.,
    7. Chiang, Y.-C.,
    8. Davis, I. J.,
    9. Fahey, C. C.,
    10. Hacker, K. E. et al.
    (2016). Dual chromatin and cytoskeletal remodeling by SETD2. Cell 166, 950-962. doi:10.1016/j.cell.2016.07.005
    OpenUrlCrossRef
  84. ↵
    1. Parker, A. L.,
    2. Kavallaris, M. and
    3. McCarroll, J. A.
    (2014). Microtubules and their role in cellular stress in cancer. Front. Oncol. 4, 153. doi:10.3389/fonc.2014.00153
    OpenUrlCrossRefPubMed
  85. ↵
    1. Pathak, N.,
    2. Austin, C. A. and
    3. Drummond, I. A.
    (2011). Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain Zebrafish cilia structure and motility. J. Biol. Chem. 286, 11685-11695. doi:10.1074/jbc.M110.209817
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Paturle-Lafanechere, L.,
    2. Eddé, B.,
    3. Denoulet, P.,
    4. Van Dorsselaer, A.,
    5. Mazarguil, H.,
    6. Le Caer, J. P.,
    7. Wehland, J. and
    8. Job, D.
    (1991). Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 30, 10523-10528. doi:10.1021/bi00107a022
    OpenUrlCrossRefPubMedWeb of Science
  87. ↵
    1. Peris, L.,
    2. Thery, M.,
    3. Fauré, J.,
    4. Saoudi, Y.,
    5. Lafanechère, L.,
    6. Chilton, J. K.,
    7. Gordon-Weeks, P.,
    8. Galjart, N.,
    9. Bornens, M.,
    10. Wordeman, L. et al.
    (2006). Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839-849. doi:10.1083/jcb.200512058
    OpenUrlAbstract/FREE Full Text
  88. ↵
    1. Peris, L.,
    2. Wagenbach, M.,
    3. Lafanechère, L.,
    4. Brocard, J.,
    5. Moore, A. T.,
    6. Kozielski, F.,
    7. Job, D.,
    8. Wordeman, L. and
    9. Andrieux, A.
    (2009). Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159-1166. doi:10.1083/jcb.200902142
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Prota, A. E.,
    2. Magiera, M. M.,
    3. Kuijpers, M.,
    4. Bargsten, K.,
    5. Frey, D.,
    6. Wieser, M.,
    7. Jaussi, R.,
    8. Hoogenraad, C. C.,
    9. Kammerer, R. A.,
    10. Janke, C. et al.
    (2013). Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J. Cell Biol. 200, 259-270. doi:10.1083/jcb.201211017
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Raff, E. C.,
    2. Hoyle, H. D.,
    3. Popodi, E. M. and
    4. Turner, F. R.
    (2008). Axoneme beta-tubulin sequence determines attachment of outer dynein arms. Curr. Biol. 18, 911-914. doi:10.1016/j.cub.2008.05.031
    OpenUrlCrossRefPubMed
  91. ↵
    1. Redeker, V.,
    2. Levilliers, N.,
    3. Schmitter, J. M.,
    4. Le Caer, J. P.,
    5. Rossier, J.,
    6. Adoutte, A. and
    7. Bré, M. H.
    (1994). Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science 266, 1688-1691. doi:10.1126/science.7992051
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Reed, N. A.,
    2. Cai, D.,
    3. Blasius, T. L.,
    4. Jih, G. T.,
    5. Meyhofer, E.,
    6. Gaertig, J. and
    7. Verhey, K. J.
    (2006). Microtubule acetylation promotes Kinesin-1 binding and transport. Curr. Biol. 16, 2166-2172. doi:10.1016/j.cub.2006.09.014
    OpenUrlCrossRefPubMedWeb of Science
  93. ↵
    1. Renthal, R.,
    2. Schneider, B. G.,
    3. Miller, M. M. and
    4. Ludueña, R. F.
    (1993). Beta IV is the major beta-tubulin isotype in bovine cilia. Cell Motil. Cytoskeleton 25, 19-29. doi:10.1002/cm.970250104
    OpenUrlCrossRefPubMedWeb of Science
  94. ↵
    1. Robison, P.,
    2. Caporizzo, M. A.,
    3. Ahmadzadeh, H.,
    4. Bogush, A. I.,
    5. Chen, C. Y.,
    6. Margulies, K. B.,
    7. Shenoy, V. B. and
    8. Prosser, B. L.
    (2016). Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352, aaf0659. doi:10.1126/science.aaf0659
    OpenUrlAbstract/FREE Full Text
  95. ↵
    1. Robson, S. J. and
    2. Burgoyne, R. D.
    (1989). Differential localisation of tyrosinated, detyrosinated, and acetylated alpha-tubulins in neurites and growth cones of dorsal root ganglion neurons. Cell Motil. Cytoskeleton 12, 273-282. doi:10.1002/cm.970120408
    OpenUrlCrossRefPubMedWeb of Science
  96. ↵
    1. Rodriguez de la Vega, M.,
    2. Sevilla, R. G.,
    3. Hermoso, A.,
    4. Lorenzo, J.,
    5. Tanco, S.,
    6. Diez, A.,
    7. Fricker, L. D.,
    8. Bautista, J. M. and
    9. Aviles, F. X.
    (2007). Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB J. 21, 851-865. doi:10.1096/fj.06-7330com
    OpenUrlAbstract/FREE Full Text
  97. ↵
    1. Rogowski, K.,
    2. Juge, F.,
    3. van Dijk, J.,
    4. Wloga, D.,
    5. Strub, J.-M.,
    6. Levilliers, N.,
    7. Thomas, D.,
    8. Bré, M. H.,
    9. Van Dorsselaer, A.,
    10. Gaertig, J. et al.
    (2009). Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137, 1076-1087. doi:10.1016/j.cell.2009.05.020
    OpenUrlCrossRefPubMed
  98. ↵
    1. Rogowski, K.,
    2. van Dijk, J.,
    3. Magiera, M. M.,
    4. Bosc, C.,
    5. Deloulme, J.-C.,
    6. Bosson, A.,
    7. Peris, L.,
    8. Gold, N. D.,
    9. Lacroix, B.,
    10. Bosch Grau, M. et al.
    (2010). A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143, 564-578. doi:10.1016/j.cell.2010.10.014
    OpenUrlCrossRefPubMedWeb of Science
  99. ↵
    1. Rüdiger, M.,
    2. Wehland, J. and
    3. Weber, K.
    (1994). The carboxy-terminal peptide of detyrosinated alpha tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. Eur. J. Biochem. 220, 309-320. doi:10.1111/j.1432-1033.1994.tb18627.x
    OpenUrlCrossRefPubMedWeb of Science
  100. ↵
    1. Rüdiger, M.,
    2. Plessmann, U.,
    3. Rudiger, A. H. and
    4. Weber, K.
    (1995). Beta tubulin of bull sperm is polyglycylated. FEBS Lett. 364, 147-151. doi:10.1016/0014-5793(95)00373-H
    OpenUrlCrossRefPubMed
  101. ↵
    1. Sadoul, K.,
    2. Wang, J.,
    3. Diagouraga, B.,
    4. Vitte, A.-L.,
    5. Buchou, T.,
    6. Rossini, T.,
    7. Polack, B.,
    8. Xi, X.,
    9. Matthias, P. and
    10. Khochbin, S.
    (2012). HDAC6 controls the kinetics of platelet activation. Blood 120, 4215-4218. doi:10.1182/blood-2012-05-428011
    OpenUrlAbstract/FREE Full Text
  102. ↵
    1. Savage, C.,
    2. Hamelin, M.,
    3. Culotti, J. G.,
    4. Coulson, A.,
    5. Albertson, D. G. and
    6. Chalfie, M.
    (1989). mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 3, 870-881. doi:10.1101/gad.3.6.870
    OpenUrlAbstract/FREE Full Text
  103. ↵
    1. Schröder, H. C.,
    2. Wehland, J. and
    3. Weber, K.
    (1985). Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods. J. Cell Biol. 100, 276-281. doi:10.1083/jcb.100.1.276
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Schwer, H. D.,
    2. Lecine, P.,
    3. Tiwari, S.,
    4. Italiano, J. E., Jr..,
    5. Hartwig, J. H. and
    6. Shivdasani, R. A.
    (2001). A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr. Biol. 11, 579-586. doi:10.1016/S0960-9822(01)00153-1
    OpenUrlCrossRefPubMedWeb of Science
  105. ↵
    1. Shida, T.,
    2. Cueva, J. G.,
    3. Xu, Z.,
    4. Goodman, M. B. and
    5. Nachury, M. V.
    (2010). The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl. Acad. Sci. USA 107, 21517-21522. doi:10.1073/pnas.1013728107
    OpenUrlAbstract/FREE Full Text
  106. ↵
    1. Sirajuddin, M.,
    2. Rice, L. M. and
    3. Vale, R. D.
    (2014). Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335-344. doi:10.1038/ncb2920
    OpenUrlCrossRefPubMed
  107. ↵
    1. Song, Y.,
    2. Kirkpatrick, L. L.,
    3. Schilling, A. B.,
    4. Helseth, D. L.,
    5. Chabot, N.,
    6. Keillor, J. W.,
    7. Johnson, G. V. W. and
    8. Brady, S. T.
    (2013). Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78, 109-123. doi:10.1016/j.neuron.2013.01.036
    OpenUrlCrossRefPubMed
  108. ↵
    1. Souček, K.,
    2. Kamaid, A.,
    3. Phung, A. D.,
    4. Kubala, L.,
    5. Bulinski, J. C.,
    6. Harper, R. W. and
    7. Eiserich, J. P.
    (2006). Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Prostate 66, 954-965. doi:10.1002/pros.20416
    OpenUrlCrossRefPubMedWeb of Science
  109. ↵
    1. Suryavanshi, S.,
    2. Eddé, B.,
    3. Fox, L. A.,
    4. Guerrero, S.,
    5. Hard, R.,
    6. Hennessey, T.,
    7. Kabi, A.,
    8. Malison, D.,
    9. Pennock, D.,
    10. Sale, W. S. et al.
    (2010). Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Curr. Biol. 20, 435-440. doi:10.1016/j.cub.2009.12.062
    OpenUrlCrossRefPubMedWeb of Science
  110. ↵
    1. Ti, S.-C.,
    2. Pamula, M. C.,
    3. Howes, S. C.,
    4. Duellberg, C.,
    5. Cade, N. I.,
    6. Kleiner, R. E.,
    7. Forth, S.,
    8. Surrey, T.,
    9. Nogales, E. and
    10. Kapoor, T. M.
    (2016). Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus- and minus-ends. Dev. Cell 37, 72-84. doi:10.1016/j.devcel.2016.03.003
    OpenUrlCrossRefPubMed
  111. ↵
    1. Tian, G.,
    2. Kong, X.-P.,
    3. Jaglin, X. H.,
    4. Chelly, J.,
    5. Keays, D. and
    6. Cowan, N. J.
    (2008). A pachygyria-causing alpha-tubulin mutation results in inefficient cycling with CCT and a deficient interaction with TBCB. Mol. Biol. Cell 19, 1152-1161. doi:10.1091/mbc.E07-09-0861
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Tian, G.,
    2. Jaglin, X. H.,
    3. Keays, D. A.,
    4. Francis, F.,
    5. Chelly, J. and
    6. Cowan, N. J.
    (2010). Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. Hum. Mol. Genet. 19, 3599-3613. doi:10.1093/hmg/ddq276
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Tischfield, M. A.,
    2. Baris, H. N.,
    3. Wu, C.,
    4. Rudolph, G.,
    5. Van Maldergem, L.,
    6. He, W.,
    7. Chan, W.-M.,
    8. Andrews, C.,
    9. Demer, J. L.,
    10. Robertson, R. L. et al.
    (2010). Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74-87. doi:10.1016/j.cell.2009.12.011
    OpenUrlCrossRefPubMedWeb of Science
  114. ↵
    1. Tischfield, M. A.,
    2. Cederquist, G. Y.,
    3. Gupta, M. L., Jr. and
    4. Engle, E. C.
    (2011). Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr. Opin. Genet. Dev. 21, 286-294. doi:10.1016/j.gde.2011.01.003
    OpenUrlCrossRefPubMed
  115. ↵
    1. Topalidou, I.,
    2. Keller, C.,
    3. Kalebic, N.,
    4. Nguyen, K. C. Q.,
    5. Somhegyi, H.,
    6. Politi, K. A.,
    7. Heppenstall, P.,
    8. Hall, D. H. and
    9. Chalfie, M.
    (2012). Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr. Biol. 22, 1057-1065. doi:10.1016/j.cub.2012.03.066
    OpenUrlCrossRefPubMed
  116. ↵
    1. Tort, O.,
    2. Tanco, S.,
    3. Rocha, C.,
    4. Bieche, I.,
    5. Seixas, C.,
    6. Bosc, C.,
    7. Andrieux, A.,
    8. Moutin, M.-J.,
    9. Xavier Aviles, F.,
    10. Lorenzo, J. et al.
    (2014). The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol. Biol. Cell 25, 3017-3027. doi:10.1091/mbc.E14-06-1072
    OpenUrlAbstract/FREE Full Text
  117. ↵
    1. Valenstein, M. L. and
    2. Roll-Mecak, A.
    (2016). Graded control of microtubule severing by tubulin glutamylation. Cell 164, 911-921. doi:10.1016/j.cell.2016.01.019
    OpenUrlCrossRefPubMed
  118. ↵
    1. van Dijk, J.,
    2. Rogowski, K.,
    3. Miro, J.,
    4. Lacroix, B.,
    5. Eddé, B. and
    6. Janke, C.
    (2007). A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26, 437-448. doi:10.1016/j.molcel.2007.04.012
    OpenUrlCrossRefPubMedWeb of Science
  119. ↵
    1. van Dijk, J.,
    2. Miro, J.,
    3. Strub, J.-M.,
    4. Lacroix, B.,
    5. van Dorsselaer, A.,
    6. Eddé, B. and
    7. Janke, C.
    (2008). Polyglutamylation is a post-translational modification with a broad range of substrates. J. Biol. Chem. 283, 3915-3922. doi:10.1074/jbc.M705813200
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Vemu, A.,
    2. Atherton, J.,
    3. Spector, J. O.,
    4. Szyk, A.,
    5. Moores, C. A. and
    6. Roll-Mecak, A.
    (2016). Structure and dynamics of single-isoform recombinant neuronal human tubulin. J. Biol. Chem. 291, 12907-12915. doi:10.1074/jbc.C116.731133
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Walter, W. J.,
    2. Beránek, V.,
    3. Fischermeier, E. and
    4. Diez, S.
    (2012). Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. PLoS ONE 7, e42218. doi:10.1371/journal.pone.0042218
    OpenUrlCrossRefPubMed
  122. ↵
    1. Wang, D.,
    2. Villasante, A.,
    3. Lewis, S. A. and
    4. Cowan, N. J.
    (1986). The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype. J. Cell Biol. 103, 1903-1910. doi:10.1083/jcb.103.5.1903
    OpenUrlAbstract/FREE Full Text
  123. ↵
    1. Weber, K.,
    2. Schneider, A.,
    3. Muller, N. and
    4. Plessmann, U.
    (1996). Polyglycylation of tubulin in the diplomonad Giardia lamblia, one of the oldest eukaryotes. FEBS Lett. 393, 27-30. doi:10.1016/0014-5793(96)00848-4
    OpenUrlCrossRefPubMed
  124. ↵
    1. Wloga, D.,
    2. Webster, D. M.,
    3. Rogowski, K.,
    4. Bré, M. H.,
    5. Levilliers, N.,
    6. Jerka-Dziadosz, M.,
    7. Janke, C.,
    8. Dougan, S. T. and
    9. Gaertig, J.
    (2009). TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell 16, 867-876. doi:10.1016/j.devcel.2009.04.008
    OpenUrlCrossRefPubMedWeb of Science
  125. ↵
    1. Xia, L.,
    2. Hai, B.,
    3. Gao, Y.,
    4. Burnette, D.,
    5. Thazhath, R.,
    6. Duan, J.,
    7. Bré, M. H.,
    8. Levilliers, N.,
    9. Gorovsky, M. A. and
    10. Gaertig, J.
    (2000). Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J. Cell Biol. 149, 1097-1106. doi:10.1083/jcb.149.5.1097
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. Yang, C.-P. H.,
    2. Yap, E.-H.,
    3. Xiao, H.,
    4. Fiser, A. and
    5. Horwitz, S. B.
    (2016). 2-(m-Azidobenzoyl)taxol binds differentially to distinct beta-tubulin isotypes. Proc. Natl. Acad. Sci. USA 113, 11294-11299. doi:10.1073/pnas.1613286113
    OpenUrlAbstract/FREE Full Text
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Detyrosination
  • glutamylation
  • glycylation
  • Tubulin code
  • tubulin isotypes

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The tubulin code at a glance
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
CELL SCIENCE AT A GLANCE
The tubulin code at a glance
Sudarshan Gadadhar, Satish Bodakuntla, Kathiresan Natarajan, Carsten Janke
Journal of Cell Science 2017 130: 1347-1353; doi: 10.1242/jcs.199471
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
CELL SCIENCE AT A GLANCE
The tubulin code at a glance
Sudarshan Gadadhar, Satish Bodakuntla, Kathiresan Natarajan, Carsten Janke
Journal of Cell Science 2017 130: 1347-1353; doi: 10.1242/jcs.199471

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction
    • Tubulin isotypes
    • Tubulin PTMs
    • Functions of the tubulin code in health and disease
    • Conclusions and perspectives
    • Acknowledgements
    • Footnotes
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Translation initiation in cancer at a glance
  • Tumour-directed microenvironment remodelling at a glance
  • FGF2 and IL-1β – explorers of unconventional secretory pathways at a glance
Show more CELL SCIENCE AT A GLANCE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992