ABSTRACT
Dynamic assembly and remodeling of actin is critical for many cellular processes during development and stress adaptation. In filamentous fungi and budding yeast, actin cables align in a polarized manner along the mother-to-daughter cell axis, and are essential for the establishment and maintenance of polarity; moreover, they rapidly remodel in response to environmental cues to achieve an optimal system response. A formin at the tip region within a macromolecular complex, called the polarisome, is responsible for driving actin cable polymerization during polarity establishment. This polarisome undergoes dynamic assembly through spatial and temporally regulated interactions between its components. Understanding this process is important to comprehend the tuneable activities of the formin-centered nucleation core, which are regulated through divergent molecular interactions and assembly modes within the polarisome. In this Review, we focus on how intrinsically disordered regions (IDRs) orchestrate the condensation of the polarisome components and the dynamic assembly of the complex. In addition, we address how these components are dynamically distributed in and out of the assembly zone, thereby regulating polarized growth. We also discuss the potential mechanical feedback mechanisms by which the force-induced actin polymerization at the tip of the budding yeast regulates the assembly and function of the polarisome.
Footnotes
Competing interests
The authors declare no competing or financial interests.
Funding
Our work in this area is supported by a Nanyang Technological University startup grant (M4081533), the Skin Research Institute of Singapore (SIG18002), and a Ministry of Education, Singapore (MOE) Academic Research Fund Tier 3 Grant (MOE2019-T3-1-012) to Y.M. in Singapore.
Supplementary information
Supplementary information available online at https://jcs.biologists.org/lookup/doi/10.1242/jcs.247916.supplemental
- © 2021. Published by The Company of Biologists Ltd
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$30.00 .
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.