Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Regulation of Normal and Tumour Stem Cells
Mesenchymal influences on epithelial differentiation in developing systems
P. M. SHARPE, M. W. J. FERGUSON
Journal of Cell Science 1988 1988: 195-230; doi: 10.1242/jcs.1988.Supplement_10.15
P. M. SHARPE
Animal & Human Reproduction Development & Growth Research Group, Department of Cell & Structural Biology, University of Manchester, Coupland 3 Building, Manchester M13 9PL, England
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. W. J. FERGUSON
Animal & Human Reproduction Development & Growth Research Group, Department of Cell & Structural Biology, University of Manchester, Coupland 3 Building, Manchester M13 9PL, England
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mesenchyme tissue: cells, matrix and soluble factors, influence the morphogenesis, proliferation and differentiation of a variety of embryonic epithelia, e.g. in the tooth, skin, mammary and salivary glands. Mesenchyme derivatives also ‘maintain’ adult epithelia, e.g. the local proliferation rate and cytokeratin composition of oral mucosa. Abnormalities in such epithelial–mesenchymal interactions lead to a variety of pathologies such as premalignant lesions, e.g. leukoplakia, tumours and psoriasis, whilst therapeutic manipulation of such interactions can prevent the exfoliation of dental implants. In all of these systems it is critical to understand, at the cellular and molecular levels, how the mesenchyme signals to the epithelium and how the latter processes and responds to such signals. We have investigated such questions using the developing embryonic palate both as a model system and as an important organ: failure of mesenchymal signalling leads to the common and distressing birth defect of cleft palate.

Bilateral palatal shelves arise from the maxillary processes of embryonic day 11 (E11) mice, grow initially vertically down the sides of the tongue, elevate on E13.8 to a horizontal position above the dorsum of the tongue and fuse with each other in the midline on E14. The medial edge epithelia of each shelf fuse with each other to form a midline epithelial seam, suprabasal cells die, and the basal (stem) cells synthesize extracellular matrix molecules and turn into mesenchymal cells. Simultaneously the oral epithelia differentiate into stratified squamous cells and the nasal epithelia into pseudostratified ciliated columnar cells. Oral, medial and nasal epithelial differentiation is specified by the underlying mesenchyme in vivo and in vitro. Signalling involves a bifurcating action of a combination of soluble growth factors e.g. TGF-α, TGF-β, PDGF and FGF on palatal epithelia and mesenchyme. These factors stimulate the synthesis of specific extracellular matrix molecules by palate mesenchyme cells, and the appearance of receptors for such molecules on epithelial cells. In this way, a combination of mesenchymal soluble factors and extracellular matrix molecules direct palatal epithelial differentiation. These signals act on epithelial basal (stem) cells, causing them to synthesize unique proteins, which may direct subsequent differentiation of daughter cells. In the most extreme example, namely the medial edge epithelia, these signals result in the basal epithelial cells transforming into mesenchymal cells, thus demonstrating that they are indeed multipotential stem cells.

  • © The Company of Biologists Limited 1988
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • mesenchyme signalling
  • embryonic palate
  • Epithelial differentiation
  • Growth factors

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mesenchymal influences on epithelial differentiation in developing systems
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Regulation of Normal and Tumour Stem Cells
Mesenchymal influences on epithelial differentiation in developing systems
P. M. SHARPE, M. W. J. FERGUSON
Journal of Cell Science 1988 1988: 195-230; doi: 10.1242/jcs.1988.Supplement_10.15
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Regulation of Normal and Tumour Stem Cells
Mesenchymal influences on epithelial differentiation in developing systems
P. M. SHARPE, M. W. J. FERGUSON
Journal of Cell Science 1988 1988: 195-230; doi: 10.1242/jcs.1988.Supplement_10.15

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Molecular events associated with the action of haemopoietic growth factors
  • Regulatory factors of embryonic stem cells
  • Stem cell renewal and differentiation in acute myeloblasts leukaemia
Show more Regulation of Normal and Tumour Stem Cells

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Introducing FocalPlane’s new Community Manager, Esperanza Agullo-Pascual

We are pleased to welcome Esperanza to the Journal of Cell Science team. The new Community Manager for FocalPlane, Esperanza is joining us from the Microscopy Core at Mount Sinai School of Medicine. Find out more about Esperanza in her introductory post over on FocalPlane.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

"Alongside pre-printing for early documentation of work, such mechanisms are particularly helpful for early-career researchers like me.”

Dr Chris MacDonald (University of York) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Cell scientist to watch: Romain Levayer

In an interview, Romain Levayer talks about starting his own lab, his love for preprints and his experience of balancing parenting with his research goals.


Live lactating mammary tissue

In a stunning video, Stewart et al. demonstrate warping of the alveolar unit due to basal cell-generated force as part of their recent work investigating roles for mechanically activated ion channels in lactation and involution.

Visit our YouTube channel to watch more videos from JCS, our sister journals and the Company.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992