Abstract
Our understanding of how the obligate intracellular bacterial pathogen Chlamydia trachomatis reprograms the function of infected cells in the upper genital tract is largely based on observations made in cell culture with transformed epithelial cell lines. Here we describe a primary organoid system derived from endometrial tissue to recapitulate epithelial cell diversity, polarity, and ensuing responses to Chlamydia infection. Using high-resolution and time-lapse microscopy, we catalogue the infection process in organoids from invasion to egress, including the reorganization of the cytoskeleton and positioning of intracellular organelles. We show this model is amenable to screening C. trachomatis mutants for defects in the fusion of pathogenic vacuoles, the recruitment of intracellular organelles, and inhibition of cell death. Moreover, we reconstructed a primary immune cell response by co-culturing infected organoids with neutrophils, and determined that effectors like CPAF and TepP limit the recruitment of neutrophils to infected organoids. Collectively, our model can be applied to study the cell biology of Chlamydia infections in three dimensional structures that better reflect the diversity of cell types and polarity encountered by Chlamydia in their animal hosts.
- Received July 29, 2020.
- Accepted January 11, 2021.
- © 2021. Published by The Company of Biologists Ltd
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$30.00 .
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.