Abstract
The recognition and disposal of misfolded proteins is essential for the maintenance of cellular homeostasis. Perturbations in the pathways that promote degradation of aberrant proteins contribute to a variety of protein aggregation disorders broadly termed proteinopathies. The p97 AAA-ATPase in combination with adaptor proteins functions to identify ubiquitylated proteins and target them for degradation by the proteasome or autophagy. Mutations in p97 cause multi-system proteinopathies; however, the precise defects underlying these disorders are unclear. Here, we systematically investigate the role of p97 and its adaptors in the process of formation of aggresomes, membrane-less structures containing ubiquitylated proteins that arise upon proteasome inhibition. We demonstrate that p97 mediates aggresome formation and clearance and identify a novel role for the adaptor UBXN1 in the process of aggresome formation. UBXN1 is recruited to aggresomes and UBXN1 knockout cells are unable to form aggresomes. Loss of p97-UBXN1 results in increased Huntingtin polyQ inclusion bodies both in mammalian cells as well as in a C.elegans model of Huntington's Disease. Together our work identifies evolutionarily conserved roles for p97-UBXN1 in the disposal of protein aggregates.
- Received September 10, 2020.
- Accepted March 3, 2021.
- © 2021. Published by The Company of Biologists Ltd
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$30.00 .
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.