
INTRODUCTION

Rab proteins are small GTPases that regulate vesicular
transport in endocytosis and exocytosis, where they have been
implicated principally in the control of vesicle docking and
fusion (Gonzalez and Scheller, 1999; Mohrmann and van der
Sluijs, 1999; Schimmöller et al., 1998). To date, ~40 distinct
Rab proteins have been identified, and each is believed to be
specifically associated with a particular organelle or pathway.
Thus far, the functions of only a fraction of known Rab proteins
have been characterized in detail. Efforts to elucidate the
molecular basis of Rab protein function have identified diverse
proteins, which range from protein kinases to cytoskeletal
proteins, associated with individual Rab proteins
(Christoforidis et al., 1999b; Echard et al., 1998; Gournier et
al., 1998; Nielsen et al., 1999; Ren et al., 1996; Sasaki et al.,
1997; Shirataki et al., 1993; Simonsen et al., 1998; Stenmark
et al., 1995; Zeng et al., 1999). Consequently, it has been
difficult to arrive at a consensus regarding the function of Rab
effector proteins in membrane transport. 

Emerging data indicate that a single activated Rab protein
can selectively bind to a multitude of effector proteins to
facilitate discrete steps in membrane transport. Through
sequential interactions, it is likely that Rab proteins temporally
and spatially coordinate vesicular transport (Christoforidis et
al., 1999a,b). Initially Rab proteins are recruited to and
activated on the donor membrane, where they are important in

vesicle budding (Jedd et al., 1997; Jones et al., 1999;
McLauchlan et al., 1998; Nuoffer et al., 1994; Riederer et al.,
1994). New data show that Rab proteins subsequently facilitate
transport along the cytoskeleton (Echard et al., 1998; Nielsen
et al., 1999) and finally participate in docking and fusion
(Gonzalez and Scheller, 1999; Mohrmann and van der Sluijs,
1999; Schimmöller et al., 1998). Thus, Rab proteins may be
viewed as central regulators of a pathway that integrate events
at each step of vesicular transport (Fig. 1). In keeping with this
idea, enzymatically active effectors help to regulate protein
recruitment and provide motility (Christoforidis et al., 1999b;
Echard et al., 1998; Nielsen et al., 1999). Other Rab effector
proteins fulfill adhesive or tethering functions, bringing
appropriate membranes into close contact (Gournier et al.,
1998; Mohrmann and van der Sluijs, 1999; Simonsen et al.,
1998; Stenmark et al., 1995; Wurmser et al., 1999). Finally,
effector and/or Rab protein interactions with components of the
SNARE machinery initiate fusion (Bean et al., 1997; McBride
et al., 1999; Peterson et al., 1999; Sapperstein et al., 1996; Sato
and Wickner, 1998). 

Multiple regulatory circuits control each aspect of
membrane transport. The Rab GTPases are themselves tightly
regulated by accessory proteins that modulate Rab protein
activity by controlling membrane association, nucleotide
binding and hydrolysis (Mohrmann and van der Sluijs, 1999).
Another level of regulation is exerted by protein kinases that
control individual Rab protein activities or downstream
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Endocytosis is characterized by vesicular transport along
numerous pathways. Common steps in each pathway
include membrane budding to form vesicles, transport to a
particular destination, and ultimately docking and fusion
with the target membrane. Specificity of vesicle targeting
is rendered in part by associated Rab GTPases. This review
summarizes current knowledge about Rab GTPase
functions in the endocytic pathways and provides insight
into the regulation of Rab GTPase activity and mechanisms
of Rab protein function. Functional assays have identified
some Rab proteins that operate on individual pathways,
but Rab proteins in several pathways remain controversial
or have not been identified. Control of Rab GTPase activity

is exerted through multiple levels of regulation. Significant
new information pertaining to Rab protein function in
regulating transport has emerged. Remarkably, Rab5
GTPase links budding, cytoskeletal transport and
docking/fusion activities. This paradigm will most likely be
generally applicable to other Rab GTPase pathways.
Together with the cross-talk between different Rab proteins
and their effectors, this may provide an integrated system
for the general coordination of endocytic pathways to
maintain organelle homeostasis. 
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effector functions (Ayad et al., 1997; Bailly et al., 1991;
Barbieri et al., 1998; Chiariello et al., 1999; Fitzgerald and
Reed, 1999; Numata et al., 1994; Ren et al., 1996; van der
Sluijs et al., 1992). Finally, opposing membrane transport
pathways governed by distinct Rab proteins must be balanced
to ensure organelle homeostasis.

A number of endocytic Rab proteins have been characterized
in the past two years. In this review, we consider the regulation
and function ascribed to individual Rab proteins in
endocytosis. We address mechanistic data supporting Rab
proteins as the link between vesicle budding, transport and
docking/fusion. Finally, we briefly discuss the coordinate
regulation of multiple Rab-controlled endocytic pathways that
effects homeostasis of membrane flux.

OVERVIEW OF ENDOCYTIC RAB PROTEINS

Ubiquitous Rab GTPases control specific endocytic
pathways
Twelve Rab proteins have been localized to the endocytic
pathway of mammalian cells; eight have been functionally
characterized, and four are epithelial specific (Table 1). Current
understanding of ubiquitous Rab proteins that regulate distinct
endocytic pathways is illustrated in Fig. 2. 

In the first step of internalization, ligands are sequestered
into clathrin-coated pits. Activated Rab5 is important for
sequestering ligands into clathrin-coated pits and subsequent
fusion of vesicles with early endosomes (also called sorting
endosomes; Fig. 2; Christoforidis et al., 1999a; McLauchlan et
al., 1998). The presence of Rab5 on early endosomes is also
essential for their homotypic fusion in vitro and in vivo
(Barbieri et al., 1996; Bucci et al., 1992; Gorvel et al., 1991).
The localization of Rab22 and the consequences of its
overexpression suggest that Rab22 regulates internalization,
but the precise step and mechanisms are unclear (Olkkonen et
al., 1993). Recent characterization of Rab15 function in
the uptake of transferrin suggests that it inhibits initial
internalization events (Zuk and Elferink, 1999). Rab15
inhibitory activity could be attributed to stimulation of a
pathway operating in the opposing direction or to direct
negative regulation. Since Rab proteins generally are
stimulatory, it will be interesting to explore the possibility that
a class of inhibitory Rab proteins functions in a similar way to
the inhibitory heterotrimeric GTPases. Considering the likely
existence of inhibitory Rab GTPases is important for
understanding endosome homeostasis.

Molecules exit early endosomes along several different
pathways. A direct pathway for recycling receptors to the
plasma membrane depends on Rab4 (Daro et al., 1996). Recent
findings also implicate Rab4 in recycling via recycling
endosomes (see Fig. 2; Mohrmann and van der Sluijs, 1999).
Whether Rab4 controls recycling along two pathways or
another GTPase is involved remains an open question. In any
event, it is likely that Rab5 and Rab4 act together to control
influx into and efflux out of early endosomes respectively,
since the two proteins exhibit concerted effector binding
(Mohrmann and van der Sluijs, 1999) and have opposing
effects on an early endosome fusion assay (Chavrier et al.,
1997). 

A slow recycling route traversed by transferrin receptors and

recycling membrane lipids leads from early endosomes
through recycling endosomes back to the plasma membrane
(Mukherjee et al., 1997). Mounting evidence suggests
that recycling endosomes constitute a distinct endocytic
compartment characterized by a discrete protein composition
and function (Daro et al., 1996; Mukherjee et al., 1997; Sheff
et al., 1999). Rab11, concentrated on recycling endosomes,
was initially demonstrated to be important for transferrin
transport through recycling endosomes in non-polarized cells
(Ren et al., 1998; Ullrich et al., 1996). Functional analyses of
Rab11 employing the Rab11Q70L mutant that was used in
these studies must be evaluated with caution, since this mutant
is not GTPase defective as originally presumed (Casanova et
al., 1999). In epithelial cells Rab11 is critical for exit from
apical recycling endosomes to the plasma membrane (Calhoun
et al., 1998; Duman et al., 1999; Fig. 3). On the basis of the
cumulative data, we think that Rab11 regulates the return of
recycling receptors to the plasma membrane (Figs 2 and 3).
Rab11 is also implicated in exocytic membrane transport from
the Golgi (Chen et al., 1998; Jedd et al., 1997; Urbé et al.,
1993). New data suggest it controls passage from the Golgi
through endosomes (W. Chen and A. Wandinger-Ness,
unpublished). Thus, Rab11 may be important for controlling
the intersection of endocytic and exocytic pathways and for the
homeostasis of the recycling endosome. In this view, the
observed accumulation of transferrin (Ullrich et al., 1996) and
its receptor (Chen et al., 1998) in early endosomes in cells
expressing dominant negative Rab11S25N might be an indirect
consequence of perturbed recycling that alters endosome
structure and function. Such a perturbation could be caused by
a block in export from the Golgi to recycling endosomes in the
face of continued transport in the opposing direction (Ullrich
et al., 1996). 

Molecules transported to the trans-Golgi network from
endosomes follow at least two different routes (Fig. 2). In one
case, defined by internalized Tac-TGN38 and the bacterial
toxins, transport occurs from early or recycling endosomes to
the trans-Golgi network (Ghosh et al., 1998; Mallard et al.,
1998). The Rab GTPase(s) responsible for Golgi transport
from early and/or recycling endosomes remain undefined. A
second pathway to the Golgi, followed by cation-independent
mannose 6-phosphate receptor and furin, occurs via late
endosomes and is regulated by Rab9 (Lombardi et al., 1993;
Mallet and Maxfield, 1999; Riederer et al., 1994). 

Components destined for degradation are delivered from the
plasma membrane to early endosomes, where they are
segregated into endocytic carrier vesicles for transport first to
late endosomes and then to lysosomes (Gruenberg et al., 1989;
Gruenberg and Maxfield, 1995). A dominant negative Rab7
mutant strongly inhibited transport from early to late
endosomes, which indicates that Rab7 is essential for this
pathway (Feng et al., 1995; Mukhopadhyay et al., 1997).
Although small GTPases have been implicated in transport
from late endosomes to lysosomes and in lysosome-lysosome
fusion, the Rab proteins important in the terminal endocytic
stages remain undefined (Mullock et al., 1994; Ward et al.,
1997). The observation that a GTPase-defective Rab7 mutant
exhibits enhanced association with lysosomes led investigators
to suspect a role for Rab7 in transport from late endosomes to
lysosomes (Méresse et al., 1995). An assay that distinguishes
sequential transport steps demonstrated that Rab7 is required
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only for transport from early to late endosomes and not for
subsequent transport to lysosomes (Y. Feng, B. Press and A.
Wandinger-Ness, unpublished). Late endosomes form hybrid
organelles with lysosomes (Bright et al., 1997; Mellman, 1996;
Mullock et al., 1998). Therefore, in retrospect the apparent
localization of the GTPase-deficient form of Rab7 on
lysosomes could be the result of the dynamic fusion between
late endosomes and lysosomes and a failure of the mutant
protein to recycle from lysosomes. 

RAB GTPASES IN EPITHELIAL TRANSCYTOSIS

The endocytic and transcytotic pathways of polarized cells
share many features in common with pathways of non-
polarized cells, but also display some unique specializations
and Rab proteins (Table 1; Fig. 3). The apical recycling
endosome is a specialized epithelial organelle, similar to
recycling endosomes in non-polarized cells, that facilitates
polarized recycling and transcytosis (Apodaca et al., 1994;
Barroso et al., 1995; Knight et al., 1995; Sheff et al., 1999).
Rab11 is present primarily on apical recycling endosomes of
epithelial cells (Casanova et al., 1999;
Goldenring et al., 1996), where it regulates
apical recycling of H+/K+ ATPase in gastric
parietal cells (Calhoun et al., 1998; Duman et al.,
1999), and polymeric IgA receptor in MDCK
cells (J. E. Casanova and J. R. Goldenring,
unpublished). Basolateral to apical transcytosis
and basolateral recycling, possibly from apical
recycling endosomes, are also controlled by
Rab11 (J. E. Casanova and J. R. Goldenring,
unpublished). Functional analyses of Rab5 and
Rab11 in polarized (Bucci et al., 1994; Duman
et al., 1999) and non-polarized cells (Bucci et al.,
1992; Chen et al., 1998; Ullrich et al., 1996)
suggest that the ubiquitous endocytic Rab
proteins may regulate analogous pathways in
both cell types. 

In addition to the network of ubiquitous Rab
GTPases, a set of epithelia-specific Rab proteins,
including Rab17, Rab18, Rab20 and Rab25,
facilitates endocytic and transcytotic transport to
the apical and basolateral plasma membranes

(Table 1; Casanova et al., 1999; Hunziker and Peters, 1998;
Lütcke et al., 1994; Zacchi et al., 1998). Little is known about
the functions of Rab18 and Rab20 (Lütcke et al., 1993;
McMurtrie et al., 1997). Recent functional characterization of
Rab17 and Rab25 indicates that they regulate aspects of
polarized sorting and receptor mediated transcytosis. Rab17 is
important for apical recycling and transcytosis to the apical
membrane (Hunziker and Peters, 1998; Zacchi et al., 1998). In
one system, overexpression of wild-type Rab17 inhibited
basolateral to apical transcytosis (Hunziker and Peters, 1998);
yet in another system two mutant forms of Rab17 stimulated
this pathway together with the apical recycling pathway
(Zacchi et al., 1998). These seemingly disparate data may be
reconciled if Rab17 is viewed as an inhibitory rather than a
stimulatory GTPase on the apical recycling pathway (Fig. 3)
or if Rab17 is specific for the differential trafficking of
individual receptors (Hunziker and Peters, 1998; Zacchi et al.,
1998). In a similar scenario, overexpression of wild-type
Rab25 in MDCK cells decreased apical recycling and
basolateral to apical transcytosis of IgA, while the dominant
negative Rab25T26N had no effect on either pathway
(Casanova et al., 1999). These data suggest a negative

GDP GTP

budding

transport

docking/fusion

active rab protein

inactive rab protein

PI 3-kinases

cytoskeletal filament

motor complex

SNARES

tethering factors

GDI

Fig. 1. Coordinate regulation of vesicular transport
by Rab proteins. Active, membrane-bound Rab
GTPases first participate in budding (possibly
contributing to cargo selection, actin cytoskeleton
rearrangements or control of coat components),
subsequently coordinate cytoskeletal transport
through interaction with motor proteins and finally
orchestrate docking and fusion with the appropriate
target. At the end of the completed transport cycle,
GAP-facilitated GTP-hydrolysis inactivates the Rab
and promotes its recycling in association with Rab
GDI for a new round of transport. To reinitiate
recruitment of Rab GTPases to the membrane, the
Rab GDI that serves as its cytosolic escort protein is
displaced and Rab protein activation through
GDP/GTP exchange occurs. 
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regulatory role for Rab25 in exit from the recycling endosome
(Casanova et al., 1999), but could also be explained if Rab25
functions in retrograde trafficking from recycling endosomes
to the Golgi (Fig. 3). If so, the closely related Rab11 and Rab25
GTPases could cooperatively regulate the homeostasis of the
recycling endosome (Fig. 3). Localization of at least three
different Rab proteins (Rab11, Rab17 and Rab25) to apical
recycling endosomes is a testament to the complexity of the
endocytic recycling system, and further study is essential if we
are to decipher the precise inter-relationships between these
proteins.

Although many Rab-regulated pathways in endocytosis have
been identified, information about specific Rab proteins
associated with almost half of the known pathways is lacking
(Figs 2 and 3).

REGULATION OF ENDOCYTOSIS BY RAB
PROTEINS 

Rab protein activity is affected by multiple factors and through
multiple effectors, influences endocytic pathways at the level
of budding, cytoskeletal transport and fusion. The combination
of specific Rab regulators and specific effectors provides a
platform for coordinate regulation of endocytic pathways. 

Control of active, GTP-bound and membrane-bound
Rab protein 
Rab activity is partly controlled through membrane association
and the status of bound nucleotides. Specific membrane
recruitment is dependent on the hypervariable, isoprenylated
C-terminus (Alexandrov et al., 1994; Stenmark et al., 1994).
Rab proteins cycle between the membrane and the cytosol
depending on the activity of Rab GTP-dissociation inhibitor
(GDI; Pfeffer et al., 1995; Wu et al., 1996). Rab protein,
complexed to GDI, is presented to the membrane where
dissociation of GDI may be facilitated by a displacement factor
(Dirac-Svejstrup et al., 1997). Nucleotide exchange occurs
upon Rab protein recruitment to the membrane and is regulated

by specific guanine nucleotide exchange factors (GEFs;
Horiuchi et al., 1997). Following membrane fusion, GTPase
activating factors (GAPs) interact with Rab proteins to
stimulate GTP hydrolysis and Rab protein inactivation.
Tuberin is a GAP that specifically inactivates Rab5 and thereby
inhibits fluid-phase endocytosis (Xiao et al., 1997).
Interestingly, two proteins that regulate Rab5 nucleotide
binding and hydrolysis (Rabex5 and tuberin) also interact with
a Rab5 effector, Rabaptin5α (Horiuchi et al., 1997; Xiao et al.,
1997), which suggests coordinate control of Rab activation and
effector binding. Nucleotide hydrolysis inactivates the Rab
protein and allows recognition by GDI for release from
membranes and recycling. Since each Rab GTPase is
controlled by discrete regulators of nucleotide exchange and
hydrolysis, differences in nucleotide-bound status are likely
and may contribute to the differential recycling of individual
Rab proteins by GDI (Chen et al., 1998; Luan et al., 1999). 

In some cases Rab protein synthesis and activation may be
regulated by activated signal transduction cascades (Alvarez-
Dominguez and Stahl, 1998; Barbieri et al., 1998; Liu and Li,
1998; Xu et al., 1996). Protein kinase B/Akt, coupled to Ras
signal transduction pathway, regulates Rab5 in macrophages
(Barbieri et al., 1998) and the Ras GAP, p120, interacts with
Rab5 to stimulate GTPase activity (Liu and Li, 1998). In B
cells, receptor signaling triggers membrane recruitment of
several small GTPases to compartments involved in antigen
presentation (Xu et al., 1996). Thus, multiple inter-related
regulatory cascades influence the levels of active, membrane-
bound Rab protein. 

Regulation of membrane budding
Membrane budding to form vesicles requires complex
interactions among multiple proteins, including the ARF
GTPases, coatomer subunits, adaptins and clathrin (Marsh and
McMahon, 1999). Accumulating evidence shows that active
Rab proteins are also required for vesicle budding, although
their precise roles remain to be determined (Schimmöller et al.,
1998). Initial evidence for Rab protein involvement in budding
was suggested by the absence of accumulated vesicles when
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Table 1. Endosomal Rab proteins
Rab Intracellular Localization Function References

Rab4 Early and recycling endosomes Endocytic recycling to plasma membrane Daro et al., 1996; Mohrmann 
and van der Sluijs, 1999

Rab5 Clathrin coated vesicles and early endosomes Endocytic internalization and early endosome fusion Bucci et al., 1992; Gorvel et al., 1991
Rab7 Late endosomes Transport from early to late endosomes Feng et al., 1995; Gorvel et al., 1991; 

Mukhopadhyay et al., 1997; 
Vitelli et al., 1997

Rab9 Late endosomes Transport from late endsomes to the trans-Golgi Lombardi et al., 1993; 
Riederer et al., 1994

Rab11 Golgi and recycling endosomes Export from the Golgi via endosomes, apical and Chen et al., 1998; Duman et al., 1999; 
basolateral endocytic recycling Goldenring et al., 1996; Ren et al., 

1998; Ullrich et al., 1996;
Urbé et al., 1993

Rab15 Early and recycling endosomes Inhibitor of endocytic internalization Zuk and Elferink, 1999
Rab17 Epithelial specific; apical recycling endosome Transport through apical recycling endosomes Hunziker and Peters, 1998; 

(see also text) Zacchi et al., 1998
Rab18 Epithelial specific; kidney dense apical tubules Uncharacterized Lütcke et al., 1994

and basolateral domain of intestine
Rab20 Epithelial specific; kidney dense apical tubules Uncharacterized Lütcke et al., 1994
Rab22 Endosomes and plasma membrane Uncharacterized Olkkonen et al., 1993
Rab24 Endoplasmic reticulum, Golgi and late endosomes Uncharacterized Olkkonen et al., 1993
Rab25 Epithelial specific; apical recycling endosome Transport through apical recycling endosomes Casanova et al., 1999

(see also text)
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membrane transport was inhibited by expression of dominant
negative Rab proteins (Nuoffer et al., 1994; Riederer et al.,
1994). Subsequently, active Rab5 was shown to be required for
ligand sequestration into clathrin coated pits (McLauchlan et
al., 1998). Given that Rab5 is not involved in coated pit
formation per se, these data hint that Rab proteins facilitate
cargo selection. A novel cargo selection protein called TIP47 is
recruited to membranes in a GTP-dependent manner, where it
binds to the cation-independent mannose-6-phosphate receptor
and facilitates transport of the receptor from endosomes to the
trans-Golgi network (Diaz and Pfeffer, 1998). Given that Rab9
is important for transport of the mannose-6-phosphate receptor
along this pathway, there may be a link between TIP47, Rab9
and cargo recruitment. One last piece of evidence for
involvement of Rab proteins in vesicle budding stems from the
demonstrated genetic interaction between the ARF GEFs,
participants in coat protein recruitment, and yeast Rab proteins
(Jones et al., 1999). These data, together with the fact that Rab
proteins are recruited to and activated on the donor membrane
prior to vesicle budding (Soldati et al., 1994), make a
compelling case for Rab protein involvement in transport
beginning at the vesicle budding stage. 

Regulation of cytoskeletal transport
Membrane vesicles are dynamically transported within the cell
to allow delivery and recycling of proteins and lipids. The
importance of the cytoskeleton in organellar transport and
morphology was recognized decades ago (Sheetz, 1999). More
recently, endocytic transport along the actin cytoskeleton and
microtubules has been examined in depth. This has led to the
identification of novel motor proteins and the recognition that
Rab proteins are intimately associated with cytoskeletal
proteins for the regulation of transport along microtubules.

In the early stages of endocytosis, the actin cytoskeleton
plays a prominent role. This was elegantly demonstrated by
genetic studies in yeast, where endocytosis mutants exhibited
deficiencies in actin and myosin (Riezman et al., 1996).
Disruption of the actin cytoskeleton in mammalian cells with
reagents that sequester actin monomers inhibits transferrin
clustering into clathrin-coated pits and subsequent endocytosis
(Lamaze et al., 1997). Several regulators of endocytosis and
recycling (dynamin I, clathrin and a member of the NSF/sec18
family) associate with profilins, which denotes an interaction
between endocytic compartments and the actin cytoskeleton
(Witke et al., 1998). 

In addition to the established functions of the Rho GTPases
in actin remodeling and endocytic transport (Murphy et al.,
1996), it is necessary to consider the less well-characterized
functional links between the Rab GTPases and the actin
cytoskeleton. Rab5 and its effectors bind to actin (Kato et al.,
1996; Kurzchalia et al., 1992; Ohya et al., 1998) and, under
some circumstances, Rab5 is actively required for the
reorganization of actin stress fibers (Imamura et al., 1998).
Analyses of green fluorescent protein (GFP)-Rab11-labeled
endosomes reveal an intimate interaction between Rab11 and
the actin cytoskeleton that is critical for transferrin recycling
(Sönnichsen and Zerial, 1998). The reorganization of actin into
comet-like tails is important for micropinocytosis (Merrifield,
1999) and remodeling of membrane-associated actin on
endosomes might be generally important for membrane
budding (Harder et al., 1997; Lamaze et al., 1997). 

In spite of these tantalizing links, the function of interactions
between Rab proteins and the actin cytoskeleton remains
unclear. Could the function of Rab proteins in cargo selection
and vesicle budding be linked to their associations with actin
for transport? Could microfilaments interact with myosin based
motors present on endosomes and lysosomes and serve as
tracks for directed vesicle transport (Raposo et al., 1999;
Simon and Pon, 1996)? Could Rab proteins bind to myosin
motors to mediate transport on the actin cytoskeleton much as
Rab-associated kinesins mediate transport along microtubules
(Echard et al., 1998; Nielsen et al., 1999)? Finally, studies on
Rab8 and its yeast orthologue Sec4p indicate that interactions
between Rab proteins and actin may also be important for
vesicle docking and fusion (Finger et al., 1998; Guo et al.,
1999; Peränen et al., 1996). Thus, investigation of the links
between Rab proteins and the actin cytoskeleton should help
us better understand the molecular and functional basis for this
interaction.

Microtubules and associated dynein and kinesin motor
proteins have been implicated in multiple endocytic transport
steps (Aniento et al., 1993; Apodaca et al., 1994; D’Arrigo et
al., 1997; Gruenberg et al., 1989; Itin et al., 1999; Santama et
al., 1998). Although the CLIP family of proteins control
membrane association of motor proteins (Pierre et al., 1992),
it remains unclear how the activities of motor proteins are
coordinated to bring about membrane transport. The recent
recognition that active Rab proteins can bind novel kinesin
motor proteins (Echard et al., 1998; Nielsen et al., 1999) and
regulate motor protein activity (Nielsen et al., 1999) defines a
new paradigm for the coordinate control of membrane
transport. Movement of GFP-Rab5 labeled early endosomes on
microtubules depends on active Rab5, the hVPS34 lipid kinase
and a minus-end directed kinesin (Nielsen et al., 1999).
Specificity was ascertained by the inability of Rab7 or another
Rab5 associated lipid kinase (p85α/p110β) to stimulate
early endosome movement. Furthermore, Rab5-stimulated
microtubule motility is separable from Rab5-dependent
endosome docking and fusion. These data lend strong support
to a model in which activated Rab proteins serve as a scaffold
for multiple effectors. Through the temporal control of effector
protein binding, individual Rab GTPases may control multiple
events necessary for the transport of cargo between
compartments.

Rab proteins present on other pathways probably also
coordinate microtubule-based motility. In vivo, GFP-Rab7
labeled late endosomes move bidirectionally along
microtubules (Y. Feng and A. Wandinger-Ness, unpublished).
Given that Rab7-controlled endocytic vesicle transport to late
endosomes depends on dynein (Aniento et al., 1993), it will be
of interest to determine the possible connection between these
two factors. Rab9-dependent transport from late endosomes to
the trans-Golgi depends on microtubules and dynein, which
suggests that Rab9 coordinates microtubule-dependent motility
as well. The exquisite sensitivity of Rab11 and Rab25
localization to agents that alter microtubule stability suggests
that the connections between Rab proteins and the cytoskeleton
also extend to epithelial cells (Casanova et al., 1999). 

Regulation of docking and fusion
It has been appreciated for several years that Rab proteins
provide specificity for membrane docking and fusion
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(Mohrmann and van der Sluijs, 1999;
Schimmöller et al., 1998; Ungermann
et al., 1998). Recently, several groups
have shown that EEA1 and SNAREs
suffice for homotypic early endosome
docking and fusion (Christoforidis et
al., 1999a; McBride et al., 1999;
Simonsen et al., 1998). Active Rab5
functions upstream, transiently
binding the hVPS34 lipid kinase and generating a localized
microdomain that recruits EEA1 (Christoforidis et al., 1999a;
Patki et al., 1997). Following membrane recruitment, EEA1
becomes part of a high molecular mass oligomer that includes
Rabaptin, Rabex5 and NEM-sensitive factor (NSF) (McBride
et al., 1999). EEA1 both tethers the incoming vesicle and
mediates the transient incorporation of a t-SNARE essential for
endosome fusion into the oligomeric complex (McBride et al.,
1999). Thus, through the assembly of this oligomeric complex,
active Rab5 and its effectors can coordinate the docking of an
incoming vesicle and NSF/SNARE-mediated fusion (McBride
et al., 1999). A large macromolecular complex is also
assembled in a temporally and spatially controlled manner to
promote homotypic vacuole fusion in yeast (Mayer and
Wickner, 1997; Sato and Wickner, 1998; Ungermann et al.,
1998; Xu et al., 1998).

The requirement for phosphoinositide (PI) 3-kinases in other
endocytic transport steps has been tested using inhibitors such
as wortmannin. With the exception of transport from late
endosomes to the trans-Golgi (Nakajima and Pfeffer, 1997), PI
3-kinases are required for most endocytic pathways examined
(Brown et al., 1995; Davidson, 1995; Mallet and Maxfield,
1999; Reaves et al., 1996; Shpetner et al., 1996). Distinct PI 3-
kinases are important for different endocytic events. Rab5
binds to two different PI 3-kinases, hVPS34/p150 and
p85α/p110β (Christoforidis et al., 1999b). Since the
p85α/p110β complex (in contrast to hVPS34/p150) affects

neither microtubule motility nor early endosome fusion events,
it is speculated to be important for budding (Christoforidis et
al., 1999b; Nielsen et al., 1999). Although distinct anti-PI 3-
kinase IgGs microinjected into cells can differentially affect
endocytic pathways (Siddhanta et al., 1998), our view is that
PI 3-kinases are not pathway specific but rather specify the
recruitment of different categories of effectors. We base this
view on indications that hVPS34 functions in multiple steps,
e.g. promoting transport of vacuolar proteins from the yeast
Golgi to endosomes (Peterson et al., 1999) and in Rab7
regulated transport to late endosomes (Y. Feng and A.
Wandinger-Ness, unpublished). The specificity of effector
recruitment in response to the hVPS34 kinase most likely lies
in the combined recognition of the active Rab protein and
specific membrane lipids, as is the case for EEA1 (Stenmark
and Aasland, 1999). EEA1 is a member of a family of proteins
that have the FYVE finger signature motif specifying lipid
binding (Burd and Emr, 1998; Kutateladze et al., 1999).
Therefore, localization and characterization of the known
FYVE domain proteins should allow for identification of
those that function on the endocytic pathway. The class-I
p85α/p110β kinase that also associates with active Rab5 has a
different substrate specificity and preferentially produces bis-
and tris-phosphorylated inositol lipids. This challenges us to
discover downstream effectors of these Rab/lipid kinase
complexes and to determine how they differ from those of the
Rab/hVPS34 kinase complex. 
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Coordinate control of
endocytosis orchestrated
by Rab proteins
Endocytic vesicles transit
diverse pathways to deliver and
retrieve cargo from organelles.
When transport is inhibited,
dramatic structural alterations
occur within minutes (Coimbra
et al., 1983; Knapp and
Swanson, 1990; Parton et al.,
1992). Maintaining homeostasis
in the face of continuous
membrane transport requires
precise coordination of
transport pathways so that
delivery to an organelle equals
exit from it. Cross-talk between
Rab proteins operative on
distinct pathways may facilitate
coordinate control of
endocytosis. For example, Rabaptin5 and Rabaptin4 each
associate with both Rab5 and Rab4 (Mohrmann and van der
Sluijs, 1999; Vitale et al., 1998). The Rab GTPase/Rabaptin
pair may thus differentially coordinate flux along two
endocytic pathways (transit to and exit from early
endosomes), simultaneously affecting endosome
homeostasis. There are several interfaces between the
biosynthetic and endocytic pathways that are important for
balance between new synthesis and molecular recycling.
Currently, only Rab9 is known to function on these circuits,
but undoubtedly there are others. Interconnections between the
endo- and exocytic pathways may even be controlled by the
same GTPases that are important for endocytic recycling
(Rab11, Rab4 and ARF6), as evidenced by function on both
pathways (Chen et al., 1998) or presence on regulated secretory
vesicles and endosomes (Millar et al., 1999; Ohnishi et al.,
1999; Urbé et al., 1993). Signal transduction cascades affecting
the Rab GTPases may additionally serve to coordinate control
of multiple pathways and impact homeostasis (Barbieri et al.,

1998; Fitzgerald and Reed, 1999). Therefore, delineating the
localization, regulation, effectors and functions of endocytic
Rab GTPases is necessary not only for understanding how Rab
proteins function, but also for elucidating the mechanisms
underlying endosome homeostasis and coordinate control of
membrane transport. 

CONCLUSION

Rab proteins are important intermediaries that are regulated by

T T

TTT

APEE

BLEE

T
T

T T T

LE

L

APRE

tight 
junction

N

Rab11
Rab17?
Rab25?

?Rab5

Rab7?

?

?

Rab5 ?

APEE apical early endosome
APRE apical recycling endosome
LE late endosome
TGN trans-golgi network
L lysosome
N nucleus
BLEE basolaterol early endosome
TJ tight junction
? unknown rab-regulation

TGN

Rab25

Rab11

Rab7?

?

Apical

Basolateral

?

?

Fig. 3. Rab-regulated endocytosis
and transcytosis in polarized cells.
In polarized cells molecules may be
internalized from the apical or
basolateral plasma membrane
domains into distinct early
endosome populations. In some
cases molecules in apical or
basolateral early endosomes are
transported to the apical recycling
endosome where they are sorted for
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Rab function.



190

GTP binding and hydrolysis, by effector protein interactions
and by signal transduction pathways. Rab proteins in turn
coordinate vesicular transport from the initial stages of budding
from one membrane, to transport along the cytoskeleton and,
finally, to docking/fusion with an acceptor membrane. Rab
proteins specifically regulate each of these processes by
serving as a scaffold for binding unique effectors to conduct
each function. Therefore Rab proteins can be considered
master-regulators of transport. 
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