Fluorescent protein spectra

George Patterson1, Rich N. Day2 and David Piston1*

1Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, 37232-0615, USA
2Departments of Medicine and Cell Biology, Box 800578 HSC, University of Virginia, Charlottesville, VA 22908-0578, USA
*Author for correspondence

The cloning of the green fluorescent protein (GFP) from the jellyfish Aequoria victoria and its expression in heterologous systems was a significant advance for optical microscopy of living cells (Chalfie et al., 1994). Mutagenesis of jellyfish GFP has yielded proteins that fluoresce from blue to yellowish green, and genetic manipulations have generated GFP variants that are better suited for fluorescence microscopy than wild-type GFP and have optimized codon usage (Tsien, R. Y., 1998). For example, a green color variant of Aequoria GFP (EGFP) has been extensively used as an in vivo reporter because of its high quantum yield and resistance to photobleaching. However, the useful cyan fluorescent variant (ECFP) has low absorption and low quantum yield, whereas the yellowish-green fluorescent protein (EYFP) has the highest absorption and quantum yield but is more susceptible to photobleaching than are most other mutants. The recent cloning of a gene that encodes a red fluorescent protein (dsRed) from the Indo-Pacific sea anemone Discosoma striata has provided yet another fluorescent protein that is further red-shifted (Matz, M. V. et al. 1999). The dsRed shares only ~25% sequence identity with Aequoria GFP; other usable GFPs are therefore likely to be discovered in the future. Several limitations to the use of dsRed have been identified, including slow protein maturation and a strong tendency to form tetramers (Baird, G. S., et al. 2000).

The poster shows excitation and emission spectra determined for each fluorescent protein (excitation spectra are shown in lighter shades). Methods for purification and characterization of fluorescent proteins are described in detail elsewhere (Piston et al. 1999). Briefly, the cDNA of each GFP was subcloned to produce an N-terminal His6 fusion protein. His6-tagged GFPs were expressed in E. coli grown at 37°C, and

(See poster insert)
purified on a Ni NTA agarose column. Protein concentrations were determined by BCA assay, and the purification efficiencies were determined by scanning densitometry of SDS gels. Only proteins that were purified to >95% homogeneity were used for experiments. Extinction coefficients (see Table 1) were determined by Beers Law and data from an absorption spectrophotometer. Fluorescence excitation and emission spectra were measured and quantum yields were determined by using either fluorescein (QY = 0.85) or 1-aminoanthracene (QY = 0.61) as a reference standard. Photobleaching and pH stability measurements were performed as described previously (Patterson et al., 1997).

The fluorescent images shown in each panel are were obtained from the following proteins: GFP-Pit-1 (localized to the nucleus); BFP-C/EBPβ deletion 1-243 (localized to subnuclear foci); CFP-C/EBPβ (localized to subnuclear foci); Ds-RED (throughout cell); GFP-GRIP-1 (subnuclear puncta), BFP-C/EBPβ deletion 1-243 (subnuclear foci), and PML-DsRed (nuclear dots). In each case, cells were transfected with expression plasmids by electroporation, plated on glass coverslips and viewed after approximately 24 h in culture. The fluorescence images were acquired using an Olympus IX-70 inverted microscope (Olympus America, Melville, NY) equipped with a 60x aqueous-immersion objective lens and 100 W mercury-xenon arc lamp excitation light source. The detector used was a Hamamatsu Orca II cooled CCD camera.

REFERENCES

JCS offers fellowships of up to US$4000 to graduate students and post-docs wishing to make collaborative visits to other laboratories. These are designed to cover the cost of travel and other expenses, and there is no restriction on nationality. Applicants should be working in the field of cell biology and intend to visit a laboratory in another country. Each application is judged on the excellence of the candidate, and the importance and innovative quality of the work to be done.

Application forms can be downloaded from our Web site at www.biologists.com/cob/tf. Please send the completed application form, together with a copy of your CV, an account of the work to be done and a breakdown of the costs involved, as well as letters of recommendation from the heads of the laboratory in which you currently work and the laboratory you hope to visit, to the Production Editor at the address below.

Journal of Cell Science Editorial Office, The Company of Biologists Limited, Bidder Building, 140 Cowley Road, Cambridge CB4 0DL, UK

Deadline: 31st March 2001

Table 1. Properties of fluorescent proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>Residue changes</th>
<th>Extinction coefficient (M⁻¹ cm⁻¹)</th>
<th>Quantum yield (%)</th>
<th>Excitation peak (nm)</th>
<th>Emission peak (nm)</th>
<th>pH dependence (EC50)</th>
<th>Bleaching time (relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBFP</td>
<td>F64L, Y66H, Y145F</td>
<td>31,000</td>
<td>25</td>
<td>383</td>
<td>445</td>
<td>5.8</td>
<td>3</td>
</tr>
<tr>
<td>ECFP</td>
<td>S65A, Y66W, S72A, N1461L, M153T, V163A</td>
<td>26,000</td>
<td>40</td>
<td>434</td>
<td>477</td>
<td>4.7</td>
<td>85</td>
</tr>
<tr>
<td>EGFP</td>
<td>F64L, S65T</td>
<td>55,000</td>
<td>60</td>
<td>489</td>
<td>508</td>
<td>5.9</td>
<td>100</td>
</tr>
<tr>
<td>EYFP</td>
<td>S65G, V68L, S72A, T203Y</td>
<td>84,000</td>
<td>61</td>
<td>514</td>
<td>527</td>
<td>6.5</td>
<td>35</td>
</tr>
<tr>
<td>dsRed</td>
<td>S65A, Y66W, S72A, N1461I, M153T, V163A</td>
<td>72,500</td>
<td>68</td>
<td>558</td>
<td>583</td>
<td>4.3</td>
<td>145</td>
</tr>
</tbody>
</table>

Cell Science at a Glance on the Web

Electronic copies of the full-size poster insert are available in the online version of this article (see www.biologists.com/jcs). Files in several formats are provided and may be downloaded for use as slides.