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ABSTRACT
Toll-like receptors (TLRs) are danger-sensing receptors that typically
propagate self-limiting inflammatory responses, but can unleash
uncontrolled inflammation in non-homeostatic or disease settings.
Activation of TLRs by pathogen- and/or host-derived stimuli triggers a
range of signalling and transcriptional pathways to programme
inflammatory and anti-microbial responses, including the production
of a suite of inflammatory cytokines and other mediators. Multiple
sorting and signalling adaptors are recruited to receptor complexes
on the plasma membrane or endosomes where they act as scaffolds
for downstream signalling kinases and effectors at these sites. So
far, seven proximal TLR adaptors have been identified: MyD88, MAL,
TRIF (also known as TICAM1), TRAM (TICAM2), SARM (SARM1),
BCAP (PIK3AP1) and SCIMP. Most adaptors tether directly to TLRs
through homotypic Toll/interleukin-1 receptor domain (TIR)–TIR
interactions, whereas SCIMP binds to TLRs through an atypical
TIR–non-TIR interaction. In this Review, we highlight the key roles for
these adaptors in TLR signalling, scaffolding and receptor sorting and
discuss how the adaptors thereby direct the differential outcomes of
TLR-mediated responses. We further summarise TLR adaptor
regulation and function, and make note of human diseases that
might be associated with mutations in these adaptors.
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Introduction
Our innate immune system acts as the first line of defence against
invading pathogens and is able to distinguish between ‘self’ and
‘non-self’ through a variety of germline-encoded transmembrane
pattern recognition receptors (PRRs). PRRs detect evolutionarily
conserved molecules that are distinct to specific microbes, termed
pathogen-associated molecular patterns (PAMPs), as well as
endogenous molecules that become exposed in the context of
infection, tissue damage and inflammation known as damage-
associated molecular patterns (DAMPs) (Lotze et al., 2007). Of
these PRRs, the Toll-like receptor (TLR) family is one of the best
studied. Named after their similarities with the toll gene that was
first described in Drosophila melanogaster, this family of immune
receptors is highly conserved across multiple organisms (Anderson
et al., 1992). There are currently ten known functional human TLRs
(TLRs 1–10) and twelve functional mouse TLRs (TLRs 1–13,
where mouse TLR10 is a non-functional pseudogene) (Kawai and
Akira, 2010), each recognising different ligands and utilising four
canonical adaptors and three regulatory adaptors to induce
transcription of anti-pathogenic genes (see Table 1).

TLRs have their most prominent roles in cells of the innate
immune system, such as macrophages, dendritic cells and natural
killer cells, but they are also expressed on mucosal epithelial cells,
endothelial cells, fibroblasts and adaptive immune cells (B and
T cells) (Zarember and Godowski, 2002). TLRs distribute over cell
surfaces and within cells and this offers a comprehensive immune
defence (see Table 1). TLRs 1, 2, 4, 5 and 6 are displayed on cell
surfaces where they are poised to recognise PAMPs representing
surface molecules on different pathogens. The lipopolysaccharide
(LPS) of Gram-negative bacteria is a prime example and it is
recognised in either soluble form or on bacteria themselves, by
TLR4 in combination with co-receptors MD-2 (also known as
LY96) and CD14 (Gay et al., 2014). TLRs 3, 4 and 7–13 are found
on membranes within cells (Fig. 1), including the endoplasmic
reticulum (ER) or on endosomes and lysosomes, where they are
tasked with identifying intracellular viruses and bacteria through
recognition of bacterial components and nucleic acid signatures
such as CpG oligodeoxynucleotides (a TLR9 agonist) (Latz et al.,
2004) (see Table 1 and Fig. 1).

TLRs are type I transmembrane proteins defined by an
extracellular leucine-rich repeat (LRR) domain for ligand
recognition, a transmembrane domain (TMD) and a cytoplasmic
Toll/interleukin 1 receptor (TIR) homology domain (Gay et al.,
2014). TIR domains comprise a conserved five-β-stranded sheet
region surrounded by five adjacent α-helices on either side (Núñez
Miguel et al., 2007). They are common to both TLRs and to
interleukin-1 (IL-1) receptors, which together form the ‘interleukin-
1 receptor/Toll-like receptor superfamily’ (Dunne and O’Neill,
2003). Upon ligand binding, TLRs dimerise to induce a
conformational change in the TIR domains, which allows
homotypic interactions with other partners, including C-terminal
TIR domain-containing TLR signalling adaptor proteins
(Figs 1 and 2) (Toshchakov et al., 2011; Yamamoto et al., 2004).
Since TLRs themselves are non-enzymatic, the recruitment of
signalling adaptors (see Table 1 and 2) provides an essential link to
downstream kinases for signal transduction, and thus the adaptors
become the crucial players for guiding the outcomes of TLR
activation and signalling (O’Neill and Bowie, 2007). Here, we
introduce a variety of signalling pathways generated by TLRs, or
crosstalk receptors and the adaptors that are involved in signalling
and/or the cellular localisation of TLR signalling. We highlight
structural and functional properties for seven TLR adaptors and
conclude by discussing human diseases where TLR adaptors are
emerging as potential disease genes.

TLR signalling pathways and their adaptors
A fundamental role of activated TLRs is to elicit an acute array of
transcriptional and translational outputs that combine to generate
robust anti-microbial and pro-inflammatory responses at sites of
possible infection or danger (Medzhitov, 2001). Thus, TLR
signalling can trigger the release of anti-microbial peptides, diverse
arrays of cytokines and chemokines and reactive oxygen species.
Activated TLRs also induce cellular responses, such as phagocytosis

Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and
Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia.

*Author for correspondence (l.luo@imb.uq.edu.au)

L.L., 0000-0001-5556-7096; R.M.L., 0000-0001-8798-6172

1

© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs239194. doi:10.1242/jcs.239194

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://jcs.biologists.org/content/133/5
mailto:l.luo@imb.uq.edu.au
http://orcid.org/0000-0001-5556-7096
http://orcid.org/0000-0001-8798-6172


and macropinocytosis, for increased uptake from the surrounding
milieu and pathogen ingestion (Condon et al., 2018; Marques et al.,
2017; West et al., 2004), whereas TLR-mediated cell survival, death
and proliferation responses all contribute to an expansive adaptive
immune response (Medzhitov et al., 1997). Importantly, temporally
orchestrated outputs from TLRs stage immune responses that
transition from release of pro-inflammatory attack mediators to the
anti-inflammatory mediators needed to initiate resolution and tissue
repair (Mogensen, 2009). As such, the TLRs, their adaptors and
resulting programmes of cytokines and chemokines are central to
balancing inflammation for homeostasis and in chronic disease

settings, where excessive inflammation is most often associated
with dysregulation of pro- and anti-inflammatory cytokines (Joosten
et al., 2016).

TLR adaptors act proximally to TLRs by binding directly to the
TIR domains of the receptor in order to trigger signalling cascades
(O’Neill and Bowie, 2007). The canonical adaptors are myeloid
differentiation primary response 88 (MyD88), TIR-domain-
containing adaptor-inducing interferon-β (TRIF, also known as
TICAM1), TRIF-related adaptor molecule (TRAM, also known as
TICAM2) and MyD88 adaptor-like (MAL or TIRAP). Recruitment
of one or more of these canonical adaptors is essential for maximal

Table 1. Toll-like receptors, associated PAMPs and adaptors

TLR PAMP Adaptors Cellular location

TLR1/2 Triacylated lipoproteins MyD88, MAL, BCAP, SCIMP Cell surface
TLR2 Bacterial lipoproteins, sporozoite MyD88, MAL, BCAP, SCIMP Cell surface
TLR2/6 Diacylated lipoproteins MyD88, MAL, BCAP, SCIMP Cell surface
TLR3 dsRNA TRIF, SARM, SCIMP Endosome
TLR4 LPS MyD88, MAL, TRIF, TRAM, SARM, BCAP, SCIMP Cell surface, endosome
TLR5 Flagellin MyD88, TRIF Cell surface
TLR7 ssRNA, imidazoquinolines, guanosine analogs MyD88 Endosome
TLR8 ssRNA, imidazoquinolines MyD88 Endosome
TLR9 CpG dsDNA MyD88, MAL, SCIMP Endosome
TLR10 Viral glycoproteins, dsRNA MyD88 Endosome
TLR11 Flagellin, profilin MyD88 Endosome
TLR12 Profilin MyD88 Endosome
TLR13 Bacterial 23S rRNA MyD88 Endosome

Toll-like receptors in human (TLRs 1–10) and mouse (TLRs 1–13, where mouse TLR10 is non-functional). TLR2 can form heterodimers with TLR1 and TLR6
(denoted TLR1/2 and TLR2/6, respectively). For each TLR, the respective pathogen-associated ligands (PAMPs), TLR adaptors for signal transduction, and
cellular localisation are listed.
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Fig. 1. TLR localisation and their signalling, sorting or scaffolding adaptors. TLRs are positioned on the cell surface or on endosomal compartments
for signalling. Upon ligand binding, TLR signalling is initiated by dimerisation of receptors, which allows the recruitment of specific sets of adaptors for different
TLRs (MyD88, Mal, TRIF, TRAM, BCAP and SCIMP). SARM negatively regulates TRIF-dependent TLR signalling (red arrows). Engagement of the
signalling adaptor stimulates downstream signalling pathways to drive the induction of pro-inflammatory cytokines, and, in the case of the endosomal TLRs,
the production of type I interferons (IFNs). Highlighted protein domains are the Toll/interleukin-1 receptor (TIR), transmembrane domain (TMD), proline-rich
domain (PRD), and sterile α-motif (SAM) (see key). TLR1/2, heterodimer of TLR1 and TLR2; TLR2/6, heterodimer or TLR2 and TLR6.
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signalling from any of the TLRs; they broadly serve as signalling or
sorting adaptors for the TLR family and their roles and cellular sites
of signalling are well entrenched in the literature (O’Neill and
Bowie, 2007). Another group of TLR adaptors are those that are
recruited, in addition to the canonical adaptors, to serve specific
roles, such as providing a scaffold for downstream kinases or acting
as a negative regulator of a specific canonical adaptor in order to
further modulate signalling. Classified here as ‘regulatory adaptors’,
these include sterile α- and armadillo motif (SARM, also known as
SARM1), B-cell adaptor for phosphoinositide 3-kinase (PI3K)
(BCAP, also known as PIK3AP1) and SLP65/76 and Csk-
interacting membrane protein (SCIMP) (see Table 2 and Fig. 2).
TLR signalling can also be modulated by other classes of

signalling adaptors and co-receptor complexes that act distally to
TLRs and without tethering directly to the receptors themselves.
For example, TLRs engage in crosstalk with complement receptors
and G-protein-coupled receptors (GPCRs) to produce antagonistic
or synergistic effects in response to receptor stimulation (Hajishengallis
and Lambris, 2016; Husted et al., 2017). Furthermore, LPS-induced
activation of C5a anaphylatoxin chemotactic receptor 1 (C5aR1)
inhibits TLR4-driven expression of IL-12 family proinflammatory
cytokines in macrophages through PI3K and extracellular signal-
regulated kinase 1 and 2 (ERK1/2, also known as MAPK3
and MAPK1, respectively) signalling (Hawlisch et al., 2005),
whereas co-activation of TLR4 and the GPCR TGR5 (also known
as GPBAR1) enhances nuclear factor (NF)-κB-mediated
proinflammatory cytokine release (Mobraten et al., 2015). We
recently showed that the endocytic receptor low density lipoprotein

related protein 1 (LRP1) is activated in a crosstalk fashion by ligand-
bound TLRs to recruit the small GTPase Rab8a and its effector
PI3Kγ, which modulate Akt–mTOR signalling to downregulate
pro-inflammatory outputs in macrophages (Luo et al., 2018). In
addition, the membrane-associated scaffold and signalling adaptor
proteins, adaptor protein phosphotyrosine interacting with PH
domain and leucine zipper 1 (APPL1) and APPL2, are recruited by
distinct Rab GTPases to differentially regulate TLR responses from
either cell surface or endocytic membranes to exert opposing effects
on Akt–mitogen-activated protein kinase (MAPK) signalling and
modulate cytokine outputs (Chau et al., 2015; Yeo et al., 2016).
Thus, signalling downstream of ligand-bound dimerised TLRs is
driven by both canonical and regulatory proximal adaptors as direct
receptor binding partners, and is then further fine-tuned through the
additional influences of co-opted receptors and distal adaptors.

TLR trafficking and signalling on cell membranes
TLRs traffic to and from the cell surface through exocytic, endocytic
and recycling pathways, and they can encounter pathogens or
PAMPs at the plasma membrane, in phagosomes, macropinosomes
and other endocytic, degradative or recycling compartments (Gay
et al., 2014). TLR family members signal from the cell surface or
endosomes and/or phagosomes and adaptors are recruited to these
sites. MyD88 and MAL are typically recruited to ligand-activated
TLRs on the cell surface (see Table 1), whereas TRIF and TRAM
are recruited to endosomal membranes for signalling by intracellular
TLRs. In innate immune cells with high rates of plasma membrane
turnover, cell surface TLRs are inevitably internalised by multiple
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Fig. 2. Schematic diagram of protein domains
and motifs in the human TLR adaptors. All TLR
adaptors contain a TIR domain for interactions with
TLRs and other TIR-containing adaptors, except
for SCIMP, which associates with TLRs through a
unique TIR–non-TIR interaction. MyD88 is the only
adaptor to contain a death domain (DD), which
associates with IRAKs to allow myddosome
formation. SARM contains two tandem sterile α-motif
(SAM) domains, which allow its self-association.
Multiple TLR adaptors contain lipid-localising
motifs for membrane association: MAL has a
phosphatidylinositol (PI)-binding motif, TRAM is
myristoylated at its N terminus, and SCIMP contains
a transmembrane domain (TMD) followed by two
palmitoylation sites. SCIMP also contains a proline-
rich domain (PRD) in its cytoplasmic tail, which
scaffolds the SFK Lyn for signalling. In addition to
these domains, MyD88 contains an intermediary
domain (ID), MAL has a TRAF6-binding motif (T6B),
and BCAP has a Dof/BANK/BCAP (DBB) domain,
which together mediate additional protein–protein
interactions. All TLR adaptors are further regulated
through phosphorylation and their known upstream
kinases are shown in red. IRAK1/2, interleukin 1
receptor-associated kinase 1/2; BTK, Bruton’s
tyrosine kinase; TBK1, TANK-binding kinase 1;
PKCε, protein kinase Cε; JNK, c-Jun N-terminal
kinase; ABL1, ABL proto-oncogene 1, non-receptor
tyrosine kinase; SFK, Src family kinase.
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pathways, including in clathrin-coated vesicles and macropinosomes
(Barton and Kagan, 2009; Husebye et al., 2006; Kagan et al., 2008;
Wall et al., 2017; Zanoni et al., 2011).
TLR4 generates signalling from both plasma membrane and

endosomal adaptors during its internalisation. In line with this,
inhibition of the GTPase dynamin was found to block the depletion
of surface TLR4 and disrupt subsequent endosomal signalling from
TRAM for interferon β (IFNβ) production (Kagan et al., 2008).
Regulators such as Syk kinase and phospholipase C-γ-2 (PLCγ2)
were found to mediate the macropinocytosis of TLR4 complexes
(Zanoni et al., 2011). Several Rab GTPases also mediate vesicle
trafficking and signalling of TLR4. Rab10 localises on Golgi
membranes and enhances TLR4 trafficking to the cell surface,
resulting in increased signalling in LPS-activated cells (Wang et al.,
2010). TLR4 is redirected out of the macrophage endocytic
recycling route under the control of Rab11a to populate the
surface of phagosomes during Gram-negative bacterial ingestion for
TLR4–TRAM-mediated IRF3 signalling (Husebye et al., 2010).
TRAM is also trafficked from recycling endosomes through Rab11a
by forming a complex with the Rab11 effector FIP2 for delivery to
phagosomes and, indeed, TRAM is necessary for phagocytosis and
dispatch of Gram-negative bacteria (Skjesol et al., 2019). On early
phagosomes, TRAM acts in dual roles to direct IRF3 signalling, as
well as for nucleating polymerisation of the actin cytoskeleton
(Skjesol et al., 2019). Rab8a is not involved in TLR4 endocytosis
but it is required for TLR-mediated Akt–mTOR signalling from
early macropinosomes (Luo et al., 2014; Wall et al., 2017). Finally,
Rab7b directs late endosome and/or lysosome trafficking of
TLR4 for receptor degradation, as one of the mechanisms for
downregulating signalling (Wang et al., 2007). This is facilitated by
the transmembrane protein TMED7 which localises with TLR4 in
late endosomes where it encounters TRAM adaptor with GOLD
domain (TAG) and mediates TAG-dependent disruption of the
TRAM-TRIF complex and TLR4 degradation (Doyle et al., 2012).
For intracellular TLRs, their trafficking to endosomal compartments

for signalling can take direct or circuitous routes. The multi-
membrane spanning chaperone Unc93B1 and other accessory

proteins are needed for transport of TLRs including TLR3, TLR5,
TLR7 and TLR9 between cell compartments (Huh et al., 2014; Kim
et al., 2008; Lee et al., 2013; Pohar et al., 2013). For example,
Unc93B1 shepherds newly synthesized TLR9 out of the ER and the
receptor is then transported to the cell surface from where it is
internalised by adaptor protein-2 (AP-2) into endosomes and
lysosomes; in contrast, TLR7 is transported with Unc93B1 from the
Golgi directly to endosomes through the AP-4 sorting adaptor (Kim
et al., 2008; Lee et al., 2013). Hence, like other receptors, TLRs are
constantly trafficked through cellular pathways and recruitment of
the signalling adaptors has to be spatially, sequentially and
temporally orchestrated on different membrane domains.

Canonical TIR-containing TLR adaptors
MyD88 and MAL
MyD88 was the first of the TIR-containing adaptor proteins
found to be involved in signal transduction from all known TLRs,
with the exception of TLR3, which signals independently of
MyD88 (Yamamoto et al., 2003a). MyD88 is a cytoplasmic
adaptor and mice lacking functional MyD88 are noted for their
unresponsiveness to bacterial endotoxin (Kawai et al., 1999).
MyD88 consists of three functional domains: a death domain, an
intermediate domain and a C-terminal TIR domain (Fig. 2). MyD88
interacts with TLRs through its TIR domain (a TIR–TIR interaction)
and in so doing it recruits downstream interleukin-1 receptor-
associated kinase 4 (IRAK4) through a homotypic death domain
protein–protein interaction (Loiarro et al., 2009). Subsequent
recruitment of IRAK1 and IRAK2 by IRAK4 results in formation
of a ‘myddosome’ complex, which activates PI3K–Akt andMAPK,
leading to nuclear translocation of the transcription factor NF-κB
and transcription of NF-κB- and AP-1-dependent pro-inflammatory
cytokines such as tumour necrosis factor (TNF) and IL-6 (Gay et al.,
2011; Lin et al., 2010; Motshwene et al., 2009). The myddosome is
a precise, stoichiometric assembly of MyD88 with its downstream
IRAK kinases that is nucleated in response to an activated receptor
complex for signal transduction. A crystal structure of the complex
reveals it consists of six MyD88 death domains and four each from

Table 2. TLR adaptors

Adaptor
Molecular
mass (kDa) Expression Function KO phenotype Reference

MyD88 33 Macrophages, DCs, B cells
T cells, NK cells, mast cells,
granulocytes, osteoclasts

Early NF-κB activation Delayed TLR4 signalling;
enhanced TLR3
signalling

Kawai et al., 1999;
Siednienko et al.,
2011

MAL (TIRAP) 24 Macrophages, DCs, B cells
T cells, NK cells, mast cells,
granulocytes, osteoclasts

Sorting adaptor for MyD88 Reduced TLR2, TLR4
signalling

Yamamoto et al., 2002a

TRIF 76 Macrophages, DCs, B cells
T cells, NK cells, mast cells,
granulocytes, osteoclasts

Delayed NF-κB activation Reduced TLR3, TLR4
signalling

Yamamoto et al., 2003a

TRAM 27 Macrophages, DCs, B cells
T cells, NK cells

Sorting adaptor for TRIF Reduced TLR4 signalling Nilsen et al., 2015;
Yamamoto et al.,
2003b

SARM 79 Highly expressed in neurons,
Macrophages, myeloid progenitor
cells

Inhibits MyD88, TRIF Reduced apoptosis Mukherjee et al., 2015

BCAP 90 Macrophages, B cells, osteoclasts Links TLRs to PI3K Reduced B cell
development

Yamazaki et al., 2002

SCIMP 17 Macrophages, DCs, B cells Signalling scaffold for Src
family kinases and
effectors

Reduced dectin-1 signalling Kralova et al., 2016; Luo
et al., 2017a

There are seven TLR adaptors, including four canonical adaptors (MyD88, MAL, TRIF and TRAM) and three regulatory adaptors (SARM, BCAPand SCIMP). The
stated molecular mass refers to the human protein. The prominent cellular expressions of each adaptor, its function in TLR signalling, and knockout (KO) mouse
phenotypes with associated references are provided.
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IRAK2 and IRAK4, and together they assemble into a left-handed
helix (Lin et al., 2010). TLR stimulation induces recruitment of the
membrane-localised bridging adaptor MAL through a homotypic
TIR domain interaction between MAL and MyD88 (Fig. 2), which
acts to concentrate and aggregate IRAKs in the myddosome to
control the intensity and duration of TLR signalling (Bonham et al.,
2014; Ve et al., 2017). In the case of TLR4, signal intensity relies on
the speed of myddosome assembly as well as myddosome number
and size as revealed by single-molecule imaging (Latty et al., 2018).
Thus, TLR-induced myddosome formation is tightly regulated for
the establishment of an activation threshold for dictation of the
inflammatory response.
MAL contains a lipid-binding domain at its N-terminus, which

interacts with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]
enriched in microdomains on the cytoplasmic face of the plasma
membrane, thereby recruiting MyD88 to the TLR at the membrane
for signal transduction (Kagan and Medzhitov, 2006). Disruption of
membrane PI(4,5)P2 dampens signalling from multiple MyD88-
dependent TLRs, indicating the requirement for MAL to ensure the
correct, lipid-driven spatial distribution of the receptors (Choi et al.,
2013; Kagan and Medzhitov, 2006). Moreover, during TLR4
endocytosis, the plasma membrane PI(4,5)P2 is depleted, causing
membrane dissociation ofMAL,which then provides the opportunity
for subsequent recruitment of the endosomal adaptors TRIF and
TRAM (Kagan et al., 2008). Therefore, MyD88 and MAL are key
TLR adaptors for recruiting downstream kinases and targeting TLR4
to the appropriate lipid membrane for TLR signalling.

TRIF and TRAM
Following the identification of the MyD88–MAL pathway of TLR
activation, a further TIR-containing signalling adaptor, TRIF, was
identified as a mediator of MyD88-independent TLR signalling
(Yamamoto et al., 2002b). TRIF-mediated signalling is triggered at
the early endosome by TLR3 or endocytosed TLR4 to induce a
delayed NF-κB response (Fig. 1) (Kagan et al., 2008). This delayed
response occurs through TNF receptor-associated factor 6
(TRAF6), TRAF3 and receptor-interacting serine/threonine-
protein kinase 1 (RIP1, also known as RIPK1) acting on the
MAPK TGF-β activated kinase 1 (TAK1, also known asMAP3K7),
which leads to the activation of interferon regulatory factor 3 (IRF3)
(O’Neill and Bowie, 2007). Activated IRF3 subsequently
translocates to the nucleus and induces transcription of type 1
interferons (IFNs) together with activation of TNF, inducing a late-
phase secondary activation of NF-κB (Covert et al., 2005). Viruses
such as vaccinia (VACV) and hepatitis C (HCV) have developed
strategies for suppressing TRIF-mediated inflammatory signalling
through TRIF antagonism, cleavage or degradation to evade host
antiviral responses (Li et al., 2005; Liang et al., 2018; Stack et al.,
2005). Further to its activation of IRF3 and NF-κB, TRIF has been
shown to control TLR-induced apoptosis through RIP1 and caspase-8,
providing a mechanism by which macrophages and dendritic cells
(DCs) undergo programmed cell death after intracellular bacterial
infection (De Trez et al., 2005; Ruckdeschel et al., 2004).
In a similar manner to MyD88–MAL, TRAM acts as a bridging

adaptor at the TLR4 TIR domain for the recruitment of TRIF to
TLR4 on the endosomal membrane (Figs 1 and 2) (Fitzgerald et al.,
2003). TRAM itself is localised to the membrane of endosomes
through a protein–lipid interaction mediated by myristolyation of its
N-terminus, which is critical for its role in signalling (Rowe et al.,
2006). Furthermore, TLR-induced phosphorylation of TRAM at
serine-16 by protein kinase Cε (PKCε) is required for TRAM
signalling, and PKCε is essential for macrophage activation in

response to bacterial infection (Castrillo et al., 2001; McGettrick
et al., 2006). These distinct signalling pathways mediated by TRIF
and TRAM at the endosome therefore provide additional regulation
of the inflammatory response as well as a mechanism for governing
pathogen-induced programmed cell death.

Regulatory TLR adaptors
SARM
The fifth TIR-containing adaptor to be discovered and the most
highly conserved member of the TIR protein family is SARM, with
SARM orthologs found in C. elegans, Drosophila and mammals
(O’Neill et al., 2003). SARM is predominantly expressed in neurons
of the central nervous system (CNS) and is a key regulator of
neuronal survival through its nicotinamide adenine dinucleotide
(NAD)ase activity, accelerating NAD+ depletion leading to axonal
degeneration (Carty and Bowie, 2019; Kim et al., 2007). SARM
contains two tandem sterile alpha motif (SAM) domains, which
allow SARM self-association (Fig. 2), and recent evidence shows
that NAD+ cleavage activity is regulated through SAM-mediated
self-association of the SARM TIR domain (Horsefield et al., 2019).
Unlike the pro-inflammatory effects of MyD88, MAL, TRIF and
TRAM, SARM acts as a negative regulator of TLR signalling,
inhibiting both TRIF- and MyD88-dependent pathways and
transcription factor activation (Carty et al., 2006; Peng et al.,
2010). This likely occurs through a homotypic interaction between
the BB loop of the SARM TIR domain with the TRIF and MyD88
TIR domains (Carlsson et al., 2016). Although it acts primarily as a
negative TLR regulator, SARM can also activate TLR signalling
under specific conditions as evidenced by SARM-dependent pro-
inflammatory cytokine expression in the CNS following viral
infection (Hou et al., 2013; Szretter et al., 2009; Wang et al., 2018).
SARM also participates in other PRR pathways, for instance by
negatively regulating Nacht, LRR and PYD domains-containing
protein 3 (NLRP3) during inflammasome activation to constrain the
release of the pro-inflammatory cytokine IL-1β (Carty et al., 2019).
Thus, this regulatory adaptor imposes control through its interaction
with canonical adaptors.

BCAP – a linker between TLR and PI3K signalling
BCAP is the sixth identified TIR-containing TLR adaptor, and links
TLR signalling to the activation of one subfamily of class I PI3Ks
(Fig. 3A). PI3Ks belong to a large family of lipid signalling kinases
that phosphorylate phosphoinositides, such as PI(4,5)P2, at the
D3 position of the inositol ring, creating D3′ phosphorylated
inositol lipids such as phosphatidylinositol-(3,4,5)-trisphosphate
[PI(3,4,5)P3] (De Craene et al., 2017). PI3Ks are evolutionarily
conserved from yeast to mammals and are divided into classes I, II
and III, according to their molecular structure, cellular regulation
and in vivo substrate specificities (Bilanges et al., 2019).
Importantly, D3-phosphoinositides are key cellular signalling
messengers and play a substantial role in the immune system,
including the promotion of cell survival, proliferation, macrophage
M2 polarisation and protein synthesis through activation of
Akt–mTOR (Hawkins and Stephens, 2015).

BCAP was first identified in B cells where it acts as a scaffold for
the class I PI3K regulatory subunit p85 (encoded by PIK3R1 and
PIK3R2) to recruit and activate PI3K catalytic subunits p110α,
p110β or p110δ (PIK3CA, PIK3CB and PIK3CD, respectively)
through its phosphorylated tyrosine site within four YxxM motifs
during B-cell receptor (BCR) ligation (Okada et al., 2000). In
addition, BCAP is highly expressed in other hematopoietic cells,
including macrophages, DCs and natural killer (NK) cells. In
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macrophages, BCAP is constitutively phosphorylated and associated
with the p85 subunit of PI3K for class I PI3K recruitment, which
downregulates pro-inflammatory TLR responses (Ni et al., 2012).
PI3K-mediated transitions from PI(4,5)P2 to PI(3,4,5)P3 at the
membrane result in a depletion of membrane-anchored MAL and
reduction ofMyD88-dependent TLR signalling (Halabi et al., 2017).
BCAP tethers TLRs to class IA PI3Ks through a typical TIR domain
at its N terminus (Halabi et al., 2017). The TIR domain of BCAP can
also interact with other TLR adaptors including MyD88 and
MAL (Troutman et al., 2012). BCAP-deficient macrophages

from knockout mice (Pik3ap1−/−) produce increased levels of
proinflammatory cytokines TNF, IL-12p40 and IL-6 in response to
TLR4, TLR7, and TLR9 agonists (Troutman et al., 2012).
Consistently, BCAP-deficient mice have increased recruitment of
TNF-producing DCs and monocytes to the spleen early after
infection with Salmonella typhimurium and an increase in the
severity of dextran sodium sulphate (DSS)-mediated colitis
(Troutman et al., 2012). Thus, BCAP acts as a key negative
regulator of TLR-driven inflammation through the PI3K–Akt
pathway (Fig. 3A), although the exact downstream targets and
mechanisms are not yet described.

SCIMP – a non-TIR, transmembrane TLR adaptor
SCIMP is a member of the palmitoylated transmembrane adaptor
protein (pTRAP) family and is the seventh TLR signalling adaptor
described here. SCIMP comprises a short extracellular domain,
a long intracellular domain containing multiple tyrosine
phosphorylation sites, a proline-rich motif, and two
palmitoylation sites (Fig. 2). Other pTRAPs include linker for
activation of T-cells family member 1 (LAT1, also known as
SLC7A5), phosphoprotein associated with glycosphingolipid-
enriched microdomains (PAG1), non-T-cell activation linker
(NTAL, also known as LAT2 and LAB), and Lck-interacting
transmembrane adaptor (LIME1), some of which have well-known
roles in T and B cell receptor signalling (Curson et al., 2018).
During T and B cell receptor signalling, these pTRAP family
members work collaboratively and somewhat redundantly to form
nanoclusters for the organisation of protein interactions to trigger
and modulate signalling (Curson et al., 2018). pTRAP redundancy
is also evident in signalling mediated by the tetrameric IgE receptor
complex FcεRI. In response to activation of immune receptor FcεRI
by multivalent antigens bound on IgE, multiple pTRAPs have a
redundant role in FcεRI-mediated signalling. For example,
knockout of LAT and NTAL reduced but did not abolish FcεRI-
mediated production of IL-3, IL-6 and TNF in mast cells (Zhu et al.,
2004). SCIMP was first described in B cells and dendritic cells
(Draber et al., 2011; Kralova et al., 2016) and has also been shown
by us to be the first transmembrane and non-TIR-containing TLR
adaptor in macrophages (Luo et al., 2017a). Indeed, SCIMP is
predominantly expressed in macrophages where it acts as a novel,
‘universal’ signalling adaptor for multiple members of the TLR
family including both surface and endosomal TLRs (Luo et al.,
2017a; Luo et al., 2019).

SCIMP was initially discovered in B cells through sequence
analysis of its C-terminal Src kinase (Csk) SH2 binding domain, and
binding sites for the adaptor proteins growth factor receptor-bound
protein 2 (Grb2) and Src homology 2 domain-containing leukocyte
protein of 65 kDa (SLP65) and SLP76, as well as a palmitoylation
motif and an interaction with major histocompatibility complex
class II (MHCII) (Draber et al., 2011). Interestingly, SCIMP-
deficient mice have no defects in leukocyte development or MHCII
signalling in B cells (Kralova et al., 2016). In dendritic cells, SCIMP
has also been shown to associate with the PRR dectin-1, which is
involved in fungal β-glucan recognition (Kralova et al., 2016).
SCIMP was shown to be required for propagation of dectin-1 ERK
signalling through recruitment of the Src family kinase (SFK) Syk
(Kralova et al., 2016), although the exact model for this interaction
remains unclear. Dectin-1 is also known to interact with TLR2 and 4
during the anti-β-glucan response (Yadav and Schorey, 2006), and
SCIMP could potentially be implicated in this interaction.

For TLR signalling, SCIMP acts as a membrane-bound scaffold
to mediate intracellular signal transduction (Luo et al., 2017a)
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Fig. 3. Regulation of TLR signalling by BCAP and SCIMP. (A) BCAP links
TLR signalling to PI3K activation. BCAP is engaged to MyD88 through its TIR
domain by ligand-activated TLR4. BCAP tethers class I PI3K to TLRs for Akt
activation. PI3K–Akt activation has regulatory effects on the outcome of TLR
signalling, including limiting pro-inflammatory cytokine secretion and
promoting anti-inflammatory cytokine production. (B) SCIMP-mediated TLR
signalling pathway. SCIMP associates with multiple TLRs and the Src-family
kinase Lyn in response to PAMPs. As a result, SCIMP acts as a scaffold to
recruit the effectors Grb2, Csk, and SLP65 and to enable phosphorylation of
specific TLR tyrosine residues to propagate the activation of downstream
kinases (ERK1/2, Akt and NF-κB) for the selective production of inflammatory
cytokines.
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(Fig. 3B). SCIMP is localised on intracellular membranes and on the
macrophage plasma membrane, with high concentrations in
dynamic cell-surface projections such as filopodia and membrane
ruffles (Luo et al., 2017a). SCIMP binds directly to ligand-bound
dimerised TLR4 through a unique TIR–non-TIR interaction, which
likely precedes and does not require the binding of MyD88 (Luo
et al., 2017a). Mechanistically, the SCIMP proline-rich domain
(PRD) scaffolds the SFK Lyn to phosphorylate both SCIMP itself
and LPS-activated TLR4, driving signalling and transcription in a
highly selective manner. Amongst a panel of cytokines tested,
SCIMP regulates the secretion of the pro-inflammatory cytokines
IL-6 and IL-12p40, but not TNF and others (Luo et al., 2017a). A
more extensive survey of cytokines is needed to determine whether
IL-6 and IL-12 are truly the only cytokines driven by SCIMP. In
addition, SCIMP is also recruited for signalling downstream of
other TLRs, including both plasma membrane and intracellular
TLRs (Luo et al., 2019). Like other pTRAPs such as LAT1, NTAL
and PAG, SCIMP has the potential to orchestrate multiple protein
interactions and/or trafficking of its binding partners at receptor
signalling sites.
In TLR-activated mouse macrophages, SCIMP itself is rapidly

phosphorylated by Lyn at three tyrosine residues (Fig. 3B), Y58,
Y96 and Y120 (Y69, Y107 and Y131 in the human protein),
thereby allowing TLR-activated SCIMP to act as a scaffold to
recruit the effectors Grb2, Csk and SLP65 at each site, respectively
(Luo et al., 2019, 2017b) (Fig. 3B). Grb2 and SLP65, which contain
multiple protein-binding motifs, have been implicated in B cell
signalling (Wienands et al., 1998), whereas Csk is a known negative
regulator of Lyn (Okada et al., 1991). Therefore, TLR4 and Csk are
temporally scaffolded by phosphorylated SCIMP as a potential
on–off mechanism for TLR phosphorylation. Therefore, this
positions SCIMP as a proximal universal TLR adaptor that brings
its effectors Lyn, Grb2, Csk and SLP65 to TLR signalling. Lyn is
required for SCIMP and TLR phosphorylation and recruitment of
other effectors, whereas the precise roles of other SCIMP remain to
be characterised. Together, SCIMP and its effectors produce a
capacity for selective pro-inflammatory cytokine responses.

TLR adaptors and human diseases
TLR pathways and their canonical adaptors are associated with a
number of human diseases including infection, sepsis,
inflammatory, allergic and autoimmune diseases, as well as
cancer (Marshak-Rothstein, 2006). Dysregulation of TLR
pathways is often central to these pathologies through altered
production of type I interferons, IL-6, IL-1β and TNF (Chen et al.,
2016; Eftychi et al., 2019; Zwicky et al., 2019). As examples,
autosomal recessive MyD88 deficiency results in an increased
predisposition to recurrent pyogenic bacterial infection through
impaired TLR and IL-1R responses, whereas leaving the immune
response to other microbes unaffected (Picard et al., 2011; von
Bernuth et al., 2008). TRIF dysregulation and deficiency has been
linked to weakened responses to multiple viral and some bacterial
infections through impaired TLR3–TLR4 responses (Ullah
et al., 2016). Disease-associated single-nucleotide polymorphisms
(SNPs) have been identified, which potentially link several of the
TIR-containing TLR adaptors, MyD88, MAL, TRIF, TRAM and
BCAP, to various diseases (Andiappan et al., 2011; Chu et al., 2019;
George et al., 2010; Liu et al., 2015; Mekonnen et al., 2018; Zhang
et al., 2011; Zhou et al., 2017). Like these TIR adaptors, mutation(s)
in the non-TIR-containing TLR adaptor SCIMP and its effectors are
emerging as being relevant in human inflammatory and
autoimmune diseases. Genome-wide association studies (GWASs)

have uncovered potential associations between SCIMP, a key
positive regulator of TLR pathways, and a number of immune-
linked human diseases including systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA) and Alzheimer’s disease (AD)
(see Box 1) (Dozmorov et al., 2014; Heneka et al., 2015; Jansen
et al., 2019; Lambert et al., 2013; Liu et al., 2017; Moreno-Grau
et al., 2019). SCIMP was identified as one of the top five genes with
the largest number of epigenomic elements enriched in the promoter
regions of SLE- and RA-associated gene sets, indicating that
transcriptional regulation of SCIMP might be altered in
autoimmune diseases (Dozmorov et al., 2014). The association of
multiple TLR adaptors with a growing number of inflammation-
and immune-linked diseases warrants further studies to determine
whether and how these disease associations act through TLR-driven
inflammation.

Conclusions and perspectives
This Review summarises the regulation and function of the seven
known TLR adaptors that are involved in TLR-mediated signalling
responses. MyD88, MAL, TRIF and TRAM adaptors, which are
utilised by different TLRs, initiate both pro-inflammatory and
anti-inflammatory responses. SARM plays a negative role in
MyD88- and TRIF-mediated signalling, and BCAP is exclusively
involved in TLR-induced PI3K–Akt signalling. The palmitoylated,
transmembrane- and lipid-raft-localised SCIMP is likely upstream
of all the other TLR adaptors, where it scaffolds the SFK Lyn and
other effectors and is responsible for TLR tyrosine phosphorylation
and activation. Given the well-characterised roles of other pTRAPs
in T and B cell receptor signalling, SCIMP and other pTRAPs
warrant further investigation in PRR pathways in innate immune
cells. Overall, multiple adaptor families are required to shape
signalling and inflammatory responses emanating from TLRs (see
Tables 1 and 2). The TLR pathways demonstrate the importance of
spatiotemporal regulation for adaptor recruitment with receptor–
adaptor complexes at the plasma membrane and on endosomes
and/or macropinosomes (Fig. 1) generating different signalling
pathways and transcriptional outcomes to control inflammation. The
association of TLR adaptors with infectious and autoimmune

Box 1. GWAS associations of SCIMP with Alzheimer’s
disease
Increasing evidence links the pathogenesis of AD to innate immune
dysfunction and neuroinflammation (Heneka et al., 2015), and SNPs in
several upstream promoter regions and non-coding sites proximal to
SCIMP have been associated with AD in recent bioinformatics studies.
A meta-analysis of multiple GWAS studies identified SCIMP as a
genome-wide significant suggestive signal for AD risk in European
populations (rs7225151; OR=1.10; P-value=3.7×10−7) (Lambert et al.,
2013). GWAS by proxy (GWAX) analysis of common diseases in
116,196 individuals from the UK Biobank identified SCIMP as a novel
risk locus for AD (rs77493189; OR=1.11; P-value=9.6×10−10) (Liu et al.,
2017). Recently, a large-scale GWAS of clinically diagnosed AD cases
as well as individuals with one or both parents diagnosed with AD (AD-
by-proxy), consisting of 71,880 cases and 383,378 controls, revealed
multiple significantly associated, immune-linked AD risk genes including
SCIMP (rs113260531; P-value=1×10−9) (Jansen et al., 2019).
Furthermore, another recent GWAS confirmed an association between
SCIMP and AD in a sample of 4120 AD cases and 3289 control
individuals (rs7225151; OR=1.11; P-value=9.45×10−9) (Moreno-Grau
et al., 2019). It is noteworthy that the odds ratios and other measures of
SCIMP association with AD predict a low disease risk. Nevertheless,
SCIMP, other TLR adaptors and the receptor pathways are increasingly
emerging in inflammation that underlies AD and other chronic diseases.
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diseases highlights the importance of their biology and molecular
mechanisms, which may ultimately provide avenues for novel
therapeutic targets in immune-linked disease.
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