Pex35 is a regulator of peroxisome abundance

Ido Yofe¹, Kareem Soliman², Silvia G Chuartzman¹, Bruce Morgan³,⁴, Uri Weill¹, Eden Yifrach¹, Tobias P Dick¹, Sara J Cooper⁵, Christer S Ejsing⁶, Maya Schuldiner¹,⁷, Einat Zalckvar¹,⁷, Sven Thoms²,⁷

¹ Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
² Department of Child and Adolescent Health, University Medical Center, 37075 Göttingen, Germany
³ Department of Cellular Biochemistry, University of Kaiserslautern, 67653 Kaiserslautern, Germany
⁴ Division of Redox Regulation, ZMBH-DKFZ Alliance, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
⁵ HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
⁶ Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
⁷ Authors for correspondence: maya.schuldiner@weizmann.ac.il; einat.zalckvar@weizmann.ac.il; sven.thoms@med.uni-goettingen.de

Keywords: high-content screen, peroxisome, Pex35, Arf1, size regulation, fission
Abstract
Peroxisomes are cellular organelles with vital functions in lipid, amino acid, and redox metabolism. The cellular formation and dynamics of peroxisomes are governed by *PEX* genes, however, the regulation of peroxisome abundance is yet poorly understood. Here we use a high-content microscopy screen to identify novel regulators of peroxisome size and abundance. Our screen led to the identification of a previously uncharacterized gene, which we term *PEX35*, which affects peroxisome abundance. *PEX35* encodes a peroxisomal membrane protein, a remote homolog to several curvature generating human proteins. We systematically characterized the genetic and physical interactome as well as the metabolome of mutants in *PEX35*, and we found that Pex35 functionally interacts with the vesicle budding inducer Arf1. Our results highlight the functional interaction between peroxisomes and the secretory pathway.
Introduction

Of the cellular organelles, peroxisomes range among the most poorly understood. Peroxisomes are equipped with only a modest number of proteins (around 100) and have a diameter in the range of the resolution of light microscopes (approx. 200 nm) but they are extremely dynamic in size, number, and protein content (Smith and Aitchison, 2013). In addition, peroxisomes are intriguing and central organelles due to their involvement in various cellular metabolic pathways such as those of lipids, reactive oxygen species (ROS), carbohydrates, polyamines and amino acids (Wanders and Waterham, 2006), as well as their contribution to an increasing number of non-metabolic functions such as innate immunity (Dixit et al., 2010; Magalhães et al., 2016; Odendall et al., 2014).

It is not surprising therefore that malfunction of peroxisomes leads to peroxisome-specific diseases (Braverman et al., 2013; Weller et al., 2003) and contributes to the pathology of Alzheimer’s and Parkinson’s diseases, aging, cancer, type 2 diabetes, and heart failure (Beach et al., 2012; Colasante et al., 2015; Fransen et al., 2013; Islinger et al., 2012; Trompier et al., 2014). A useful distinction divides peroxisomal diseases into two groups: those in which single enzymatic functions are defective, and those where peroxisome biogenesis is defective per se. In peroxisome biogenesis disorders (PBD), genes involved in peroxisome formation or maintenance are mutated. Such genes are termed PEX genes and the proteins they encode are termed peroxins. In humans, 16 PEX genes are known (Thoms and Gärtner, 2012; Wanders and Waterham, 2006). Nearly all of the human PEX genes have orthologs in yeasts, however yeasts have additional PEX genes without obvious homologues in mammals. PEX34 from the yeast Saccharomyces cerevisiae, a recent addition to the growing list of PEX genes, encodes a peroxisomal membrane protein that functions together with the Pex11 family to control peroxisome number (Tower et al., 2011). The Pex11 family in yeast encompasses the orthologous proteins Pex11, Pex25, and Pex27, and is involved in peroxisome division and proliferation (Thoms and Erdmann, 2005). Therefore, the Pex11 family is also referred to as PEX11-type of peroxisome proliferators (PPP) (Kettelhut and Thoms, 2014; Thoms and Gärtner, 2012). Despite the identification of new genes involved in division and proliferation our understanding of peroxisome division is still partial, and hence in depth characterization of the functions of known effectors as well as discovery of more players in this process is forthcoming.

Classically, PEX genes have been identified by complementation screens using mammalian cells or yeast cells (Just and Kunau, 2014). The earlier yeast screens for PEX genes were based on the finding that β-oxidation in yeast is exclusively located in the peroxisome so that only peroxisome-competent cells were supposed to be able to utilize oleic acid as a sole carbon source (Just and Kunau, 2014). More recently, it was shown that oleic acid becomes toxic when some peroxisomal functions are compromised (Lockshon et al., 2007) and genes with these functions can therefore not be identified in traditional screen settings. Also, owing to the experimental limitations inherent in classical forward genetic screens, yeast screens for peroxisomal functions have identified mainly non-essential genes with strong phenotypes. Other, non-PEX genes that are required for peroxisome biogenesis or function have been identified by more dedicated approaches. These include the Sec61 ER translocon complex as an entry point into the endomembrane system for
peroxisomal membrane proteins (Thoms et al., 2011); or the ADP-ribosylation factors (ARFs), small GTPases involved in the control of many vesicular processes, that are also required for peroxisome formation (Anthonio et al., 2009; Lay et al., 2006).

So how can we identify more proteins required for peroxisomal function? In recent years this has been achieved by both genome-wide screens and dedicated proteomic analyses. For example, proteomics of peroxisomes were able to identify new peroxisomal proteins in fungi (Marelli et al., 2004; Schäfer et al., 2001; Thoms et al., 2008; Yi et al., 2002), plants (Eubel et al., 2008; Fukao et al., 2002; Reumann et al., 2007; Reumann et al., 2009), and mammalian tissues such as rat liver (Islinger et al., 2007; Islinger et al., 2010; Kikuchi et al., 2004), mouse liver and kidney (Mi et al., 2007; Ofman et al., 2006; Wiese et al., 2007), and human liver (Gronemeyer et al., 2013). In addition, several genome-wide genetic screens in yeast have shed light on new proteins and their potential functions. For example, fitness and transcriptome responses to oleic and myristic acid have been used to define the networks underlying the metabolic responses to these fatty acids and to identify new proteins involved in peroxisome function (Lockshon et al., 2007; Smith et al., 2002; Smith et al., 2006). A collection of kinase and phosphatase gene deletion strains has been evaluated for the expression of the peroxisomal matrix protein enzyme 3-ketoacyl-CoA thiolase (Pot1) (Saleem et al., 2008). Following a similar approach, a genome-wide screen for alterations in the expression of a GFP-labeled peroxisomal matrix protein led to the identification of 169 genes required for all the processes that lead to faithful biogenesis and propagation of peroxisomes (Saleem et al., 2010). Other systematic approaches including high-throughput experiments with quantitative analysis and modeling have been used to complete the peroxisomal proteome and to improve the understanding of peroxisome metabolism and biogenesis (Cohen et al., 2014; Wolinski et al., 2009). More recently, systematic high-content screens and bioinformatics analyses led to the identification of a new peroxisomal biogenesis protein, Pex9, and two new peroxisome matrix proteins, Pxp1 and Pxp2 (Effelsberg et al., 2016; Nötzel et al., 2016; Yifrach et al., 2016; Yofe et al., 2016). With each new study revealing additional new peroxisomal proteins it is clear that we have not yet saturated our understanding of the peroxisomal proteome and new peroxisomal proteins await discovery.

In this work, we report the results of a high-content screen in the yeast *Saccharomyces cerevisiae*, tailored to uncover mutants affecting peroxisome abundance. By creating a systematic library of mutants in yeast genes expressing a fluorescent marker for peroxisomes, followed by automated microscopy and computational image analysis, we identified a previously uncharacterized protein affecting peroxisome abundance. We show that this protein, which we name Pex35, is a peroxisomal membrane protein that controls peroxisome abundance.
Results

A high-content screen uncovers regulators of peroxisome size and number

In order to identify genes that regulate peroxisome number or size, we wanted to quantify these parameters in mutants of every yeast gene. To this end we created a query strain that enables visualization of peroxisomes and is compatible with the Synthetic Genetic Array (SGA) automated mating approach in yeast (Cohen and Schuldiner, 2011; Tong and Boone, 2006). The strain expressed the peroxisomal membrane protein Pex3 with the red fluorescent protein mCherry (Pex3-mCherry), and a fluorescent marker for the endoplasmic reticulum (Spf1-GFP) to enable automated cell segmentation. The query strain was then crossed into nearly 5000 strains of the deletion library (Giaever et al., 2002) and more than 1000 strains of the DAmP (Decreased Abundance by mRNA Perturbation) hypomorphic allele library for essential genes (Breslow et al., 2008). Following sporulation and selection of haploids we obtained about 6000 unique haploid strains, each mutated in one yeast gene and marked with Pex3-mCherry and Spf1-GFP. This screening library was subjected to automated image acquisition and analysis during growth in glucose. Using an automated high-content microscopy setup specifically configured for this purpose (Breker et al., 2013) we recorded three images covering hundreds of cells per strain (Figure 1A). We then developed a computational pipeline using the green fluorescent ER marker to find individual cells and counted the mean size of peroxisomes as well as their number per cell (Figure S1). When analyzing peroxisome size (Figure 1B, for complete data see Table S1) we found that mean cell peroxisome size varied in a range of approximately six-fold. Although some peroxisomal proteins and proteins associated with peroxisome formation were enriched at the edges of the distribution, there was no strong enrichment or near-complete coverage of mutants in peroxisomal proteins or peroxisome biogenesis factors in the strains with decreased or increased peroxisome size. Rather, genes controlling mitochondrial function or localization were dramatically enriched. Among the top 130 mutants with enlarged peroxisomes, 80 were mitochondrial proteins (five-fold enrichment, p-value=2x10^{-31}) (Eden et al., 2009), confirming a tight connection between peroxisomes and mitochondria (Cohen et al., 2014; Mohanty and McBride, 2013; Schrader et al., 2013; Thoms et al., 2009). Indeed it is known that when mitochondrial metabolism is compromised, cells can compensate by upregulating peroxisome metabolism and size (Eisenberg-Bord and Schuldiner, 2016). Interestingly, a mutant causing some of the smallest peroxisomes was defective in carbamoyl phosphate synthase (Cpa1), which is important for the biosynthesis of the amino acid citrulline. These findings indicate that peroxisome size is not the best parameter to identify new peroxisomal proteins. However, the information regarding size may be used in the future to further understand the factors that create the functional link between mitochondria and peroxisomes.

When focusing on peroxisome number, we noticed that mutants with increased peroxisome number were not enriched for peroxisomal proteins and seemed to have defects in central cellular processes like translation, chromatin control, or cytoskeletal dynamics (Figure 1C and Table S1). However, the strains with the strongest reduction in peroxisome number were strikingly enriched in known peroxisomal membrane proteins (105-fold enrichment, p-value = 10^{-26}) (Eden et al., 2009) (Figure
Among those are strains known to affect peroxisome morphology (Δpex19, Δpex27, Δinp1, Δvps1). On the other end of the spectrum, loss of Pex17, a protein that is associated with the docking complex for peroxisome matrix protein import (Huhse et al., 1998), caused a drastic increase in peroxisome number. Importantly, several unknown proteins affected peroxisome number to a similar extent as mutations in known peroxisomal proteins (Figure 1C (inset) and Table 1). Of those, the most highly ranking uncharacterized open reading frame was YGR168C.

Deletion or overexpression of YGR168C affects peroxisome number and function

We decided to focus on YGR168C since a deletion of this previously uncharacterized gene caused a decrease in peroxisome abundance that is as dramatic as defects in the known peroxisomal biogenesis and inheritance proteins Pex12 and Vps1 (Figure 2A). To ensure that this phenotype is independent of the peroxisomal marker (Pex3-mCherry) that we chose for the initial screen, we deleted YGR168C in four strains with GFP-tagged peroxisomal markers, including both matrix and membrane proteins. We found that peroxisome recognition of our image analysis program depended on the intensity of the marker used and the analysis settings. Therefore peroxisome abundance values from measurement of fluorescent markers should be stated in arbitrary units that may only be used to compare between strains with the same marker. However, regardless of the marker used, loss of YGR168C caused a significant reduction in peroxisome number per cell when compared to a control strain (Figure 2B).

Next we manipulated Ygr168c protein expression by putting it under control of the strong TEF1 promoter. Overexpression of YGR168C also led to a decrease in peroxisomal fluorescent puncta either in glucose (Figure 2C) or oleic acid as a sole carbon source (Figure 2D). The fact that both deletion and overexpression caused similar phenotypes was puzzling to us and we decided to follow peroxisomal architecture in more detail.

Super-resolution microscopy demonstrates that YGR168C overexpression leads to multi-lobular peroxisome morphology

To better characterize the effect on peroxisomes produced by either deletion or overexpression of YGR168C we analyzed peroxisome size and morphology by Stimulated Emission Depletion (STED) microscopy. Strains were transformed with a plasmid expressing a peroxisome-targeted GFP-variant (EYFP-SKL) and were analyzed by fluorescence nanoscopy using nanobodies directed against GFP. First, using STED microscopy we determined the size of peroxisomes with unprecedented accuracy. We used images of 71 peroxisomes to determine that the diameter of wild-type peroxisomes is 174 nm (± 8 nm s.e.m.), which is below the resolution of conventional light microscopy (Figure 3A,D and S2A).

Second, these images, as opposed to regular diffraction-limited analysis, revealed a clue as to the basis of the function of YGR168C. While the number of peroxisomes was reduced in Δygr168c, their size was not (Figure 3B,D and S2A). However, peroxisomes in the overexpressing strain, which appeared enlarged by confocal
microscopy, showed a striking multi-lobular morphology by STED microscopy (Figure 3C,D and S2A). This phenotype may be due to hyper-fission to tiny peroxisomes, which clump together giving the false impression of a single big peroxisome when visualizing cells by fluorescence microscopy; alternatively the multi-lobular phenotype may be due to the initiation of a proliferation process that is aborted at an early stage. Both scenarios are compatible with a role of Pex35 in controlling peroxisome fission. Loss of YGR168C may therefore cause the opposite effect – reduction in fission – causing the observed reduction in peroxisome number. Altogether our results demonstrate that Ygr168c is a *bona fide* regulator of peroxisome number and size in yeast.

YGR168C is a new PEX gene (PEX35)

Since Ygr168c has such a strong effect on peroxisome number and size, we wanted to better characterize this protein. The C-terminally tagged strain could not be visualized above background autofluorescence when expressed under its own promoter in glucose medium, indicating that expression of the protein in glucose is very low. When we expressed the protein with either a C- or N-terminal fluorescent tag under control of the medium strength *TEF1* promoter, Ygr168c tagged on either terminus was localized to punctate structures that completely co-localized with the peroxisomal markers Pex3-mCherry or Pex3-GFP (Figure 4A). The Ygr168c protein is predicted by TMHMM (Krogh et al., 2001) and TOPCONS (Bernsel et al., 2008) to be a membrane protein with five transmembrane domains and a large C-terminal domain facing the cytosol (Figure 4B). We examined the expression and localization of GFP-Ygr168c in the absence of Pex19, a farnesylated membrane protein biogenesis factor (Rucktäschel et al., 2009). In Δpex19, the residual GFP signal is distributed in the cytosol and the ER (Figure 4C). These findings further support that Ygr168c is a peroxisomal protein that is withheld in or mislocalized to the ER in the absence of Pex19. Similar results were obtained in the absence of *PEX3*: GFP-Ygr168c expression was reduced and the residual GFP signal was distributed in the cytosol and the ER (Figure S2B), in agreement with Ygr168c being a peroxisomal protein. To confirm that Ygr168c is a *bona fide* peroxisomal protein, we purified peroxisomes from oleate induced wild-type cells with a GFP-marked Ygr168c. Ygr168c was recovered from the peroxisome fraction (24%/35% interphase) of the Nycodenz density gradient and was absent in the cytosolic and the mitochondrial fractions (Figure 4D).

The N-terminal domain of Ygr168c is predicted to contain a mitochondrial targeting signal (MTS) (Emanuelsson et al., 2007). As some peroxisomal membrane proteins can be dually targeted to mitochondria we analyzed the intracellular localization of an N-terminal fragment of Ygr168c comprising the first and second predicted TMD (amino acids 1 to 107) that contain the predicted MTS as a fusion protein with mCherry. Mitochondrial targeting of the truncated protein was not observed suggesting that the N-terminal domain does not function as an MTS in this context or under these conditions. Interestingly, this fusion protein now localized to both the ER and peroxisomes (Figure 4E), in agreement with the proposed passage of peroxisomal membrane proteins through the ER (van der Zand et al., 2010). Our finding also suggests that peroxisome-specific targeting information is in the C-terminal domain of Ygr168c.

Journal of Cell Science • Advance article
The hallmark of many strains with a defect in maintaining normal peroxisome abundance is a growth defect when grown on oleic acid as the sole carbon source. Indeed, the deletion of YGR168C was not affected on glucose (Figure S2C), yet showed reduced growth and reduced formation of halos on oleic acid media, demonstrating lack of oleic acid consumption, despite the fact that its growth is not affected in the presence of glucose (Figure S2D). Interestingly, the overexpression did not give a similar phenotype (Figure S2E). However, overexpression of a GFP tagged isoform (TEF1prom-GFP-YGR168C) did display a phenotype suggesting that it somehow aggravates the effect of overexpression or creates a dominant negative (Figure S2E). Growth curves of these strains on oleate as a sole carbon source confirm this finding: The growth of Δygr168 and TEF1prom-GFP-YGR168C is slower than a control strain although is better than Δpex3 (Figure 4F). Quantitative assessment of oleate consumption at the end point of the growth assay showed that mutant cells indeed utilized less of the available oleic acid (Figure 4G).

Finally, we assayed the accumulation of peroxisomes in real time. The GAL1 promoter was introduced to regulate GFP-Ygr168c in a strain containing Pex3-RFP as a peroxisomal marker. Time-lapse microscopy following a transfer of this strain from glucose to galactose containing media displayed GFP-Ygr168c accumulating in Pex3 marked peroxisomes. Furthermore, while cells that did not show GFP-Ygr168c expression obtained normal peroxisome abundance, cells with GFP-Ygr168c expression displayed an abnormal phenotype of one enlarged peroxisome per cell over time (Figure 4H).

Taken together, these data show that Ygr168c is a new peroxisomal membrane protein in yeast. Manipulation of the expression level of Ygr168c led to changes in peroxisome number and size, as well as to growth defects on oleate. As Ygr168c bears all signs of a peroxin we renamed it Pex35.

Characterizing the molecular function of Pex35

Having identified a new peroxisomal membrane protein we were eager to functionally characterize it and understand how it exerts its effect on peroxisome number and size. Since peroxisomes have an important role in lipid metabolism we first performed a detailed lipidomic analysis but could find no significant changes in whole cell lipid composition compared to a control strain (Table S2). This result suggests that Pex35 does not influence gross membrane lipid composition. Coupled with the relatively small growth defect of Δpex35 strains grown on oleic acid our results suggest that Pex35 is not directly involved in lipid metabolism.

We then performed a synthetic growth screen to try and uncover proteins or pathways that become important when cells are lacking Pex35. In this screen, a Δpex35 strain was crossed with the libraries comprising the approximately 6000 deletion and hypomorphic strains that we had previously used for the visual screen. After mating, sporulation and selection of haploids, growth of the double mutants was compared to growth of the individual mutant strain (Table 2 and Table S3). Focusing on synthetic lethal interactions where the double mutants are dead while each single mutant is alive, we saw that redox homeostasis becomes important in the absence of Pex35. For example, deletion of the glutathione (GSH) synthetase (GSH2) required for the synthesis of GSH from γ-glutamyl cysteine and glycine was synthetic lethal.
with Δpex35. This suggests that the mutant strongly depends on a reducing environment for survival. To test this we measured the glutathione redox potential in the peroxisomal matrix using a novel peroxisomal reporter (Elbaz-Alon et al., 2014). Notably, overexpression of Pex35 caused a substantial pro-oxidative shift already under steady state conditions. Moreover, following a bolus of hydrogen peroxide, the probe remained more reduced in the deletion strain whereas it became more oxidized upon overexpression of Pex35 (Figure S2F).

Other pathways that were over-represented were those of polyamine, cysteine, lysine and arginine biosynthesis (Table 2). To test how amino acid levels are altered in the absence of Pex35 we extracted metabolites from wild-type, Δpex35, TEFprom-GFP-PEX35 and Δpex3 strains. We used HPLC-based metabolomics to characterized amino acid levels in each strain and found that amino acid levels were indeed significantly affected (Figure S2G). Remarkable was the 70% reduction of citrulline in Δpex35, which was matched by a more than two-fold increase of citrulline in TEFprom-GFP-PEX35. This was in agreement with the strong lethality of this strain in combination with mutants in the arginine biosynthetic pathway. These findings reinforce the notion that peroxisomes in yeast are important in regulating or executing aspects of amino acid metabolism (Natarajan et al., 2001) and highlights how defects in mitochondrial function (such as in arginine biosynthesis) can activate the retrograde response to enhance peroxisomal functions (Chelstowska and Butow, 1995).

Pex35 is in the proximity of Pex11-family proteins and Arfs

So far, our data suggested that Pex35 is a peroxisome membrane protein affecting peroxisome number and size, as well as redox and amino acid homeostasis. To try and understand the mechanism by which Pex35 functions we performed a systematic complementation assay using the two parts of a specially adapted dihydrofolate reductase (DHFR) enzyme (Tarassov et al., 2008). In this assay one half of the DHFR enzyme is fused to Pex35 (“bait”), which is expressed in ~5700 yeast strains expressing fusions of each individual proteins with the other half of DHFR (“prey”). When the Pex35 bait is in proximity to one of the library prey proteins, methotrexate-resistant DHFR activity is reconstituted and cells can grow in the presence of methotrexate, an inhibitor of the endogenous essential DHFR activity (Figure 5A).

When seeking for growth with an N-terminally tagged Pex35 we could not find any high-confidence complementing proteins, suggesting that the N-terminus is essential for the interaction of Pex35 with effector proteins localized at the peroxisome (not shown) and reinforcing the previous notion that the overexpression of an N-terminally tagged GFP-Pex35 is more toxic than regular overexpression. However when we performed the assay with a C-terminally tagged strain, either under the native Pex35 promoter or the strong TEF1 promoter, we identified 11 proteins previously known to be involved in peroxisomal functions among the top 16 hits (Figure 5B,C and Table S4). For example, Pex19, the peroxisomal membrane protein chaperone, supporting the notion that Pex35 is a membrane protein. Other proteins that were in the vicinity of Pex35 were peroxisomal membrane proteins or membrane-associated proteins (enrichment factor 70, p=1.6x10^{-17}) (Eden et al., 2009). Especially intriguing was the
identification of the Pex11 family proteins: Pex11 and Pex25, and Arf1, because these proteins have previously been shown to interact with each other, and all of them have a role in peroxisome fission, a process that would affect determination of peroxisome number and size (Figure 5B,C).

Pex35 modulates the effect of Arf1

To examine if the physical proximity with Arf1 can explain the effect of Pex35 on peroxisome abundance we first tested if the abundance of Arf1 or the localization of Arf1-mCherry were affected by deleting or overexpressing Pex35. We found that both deletion and overexpression of PEX35 dramatically increased Arf1 levels (Figure S3A). Moreover, PEX35 also affected Arf1-mCherry distribution: In control strains Arf1 localizes mainly in punctate structures, in agreement with the Golgi apparatus localization of Arf1 (Stearns et al., 1990). However, when PEX35 was deleted or the tagged form was overexpressed, Arf1 redistributed to various internal membranes (Figure 6A). It is well known that, while the C-terminal tag of Arf1 creates a dysfunctional form, it does report accurately on its subcellular localization (Huh et al., 2003; Jian et al., 2010).

Arf1 has previously been implicated in peroxisome formation (Anthonio et al., 2009; Lay et al., 2005; Passreiter et al., 1998). We therefore investigated if Pex35 was mediating its effect on peroxisome abundance through Arf1 by looking at the effect of ∆pex35 deletion or overexpression on the background of loss of Arf1 (∆arf1). Deletion of ARF1 in the ∆pex35 knockout lead to a marked increase in peroxisome size and aggravated the effect of ∆pex35 on peroxisome number (Figure 6B,C). Even more striking, the deletion of ARF1 in the Pex35-overexpressing strain cured the peroxisome-enlarging effect of Pex35 overexpression and normalized the number of peroxisomes to control levels (Figure 6B,C). These findings suggest that Pex35 exerts its function through a mechanism that requires Arf1.

Next we wanted to analyze Arf1 at the organellar level. We purified peroxisomes by cell fractionation from strains that contained both, GFP-tagged Pex3 as a peroxisome marker and RFP-tagged Arf1, either in a wild-type or in a ∆pex35 background (Figure S3B). The absence of the peroxisome marker in the cytosol or the mitochondria fraction showed that other compartments were free from peroxisomes. Arf1-RFP was clearly enriched in the peroxisome- and mitochondria fractions, in agreement with the results of the quantitative whole-cell analysis (Figure S3A). Distinction of peroxisomal and mitochondrial pools of Arf1, however, was not possible in this experiment, because the ‘light-mitochondrial’ faction co-fractionates with peroxisomes in the step gradient.

Our findings on the effects of Pex35 on Arf1 made us wonder whether altering PEX35 could exert an effect on the secretory pathway functions of Arf1 (Figure 6A). In order to test whether Arf1-dependent anterograde traffic was affected we tested secretion of the intra-ER chaperone Kar2 (BiP). The slow leak of Kar2 from the ER, through the Golgi and its secretion into the medium is a good way to observe dysregulated secretion (Copic et al., 2009). Indeed, overexpressing GFP-Pex35 (which led to a drastic increase in Arf1 levels) decreased secretion to 50% or less similarly to directly overexpressing Arf1 (Figure 6D). Interestingly, the deletion of PEX35 (although also leading to Arf1 overexpression) could compensate for the
effect of Arf1 overexpression suggesting that in normal physiology \textit{PEX35} restrains Arf1 function. (\textbf{Figure 6D}). Equally striking was the finding that the deletion of \textit{PEX3} alone exerted a secretion defect in the same range like strong activation of the Unfolded Protein Response (see by deletion of the ER protein \textit{SPF1}), or the overexpression of Pex35 or Arf1 (\textbf{Figure 6D}). To follow up this finding we tested the localization of Arf1-RFP in a \textit{\Delta pex3} background. The deletion of \textit{PEX3} led to a surprising loss of focal Arf1 localization (\textbf{Figure 6E}). At this point it is not clear if this is due to a direct association of Arf1 with Pex3 or Pex35, or if it is due to the upregulation of Arf1 or the large proportion of Arf1 being associated with peroxisomes that is altered upon Pex3 loss, but in either way, these data point to a strong association of peroxisomes in the function of the secretory pathway, through Pex3 and through Pex35.

\textbf{Discussion}

One of the current challenges in molecular cell biology is to integrate multiple levels of understanding, spanning holistic omics approaches and detailed analysis of single molecular entities. In this study, we go through such an analysis, starting from a large scale genetic screen in the complete deletion and DAmP collection, and end up with the identification of a new peroxisomal protein and insights into the mechanism by which it may regulate peroxisome abundance.

The initial screen relied on three automated stages: generation of a screening library comprising deletions and functional knock-downs of nearly all yeast genes, automated image acquisition, and a computational pipeline for image segregation and quantification. This approach complements the classical forward genetic screen based on growth on oleate, with the advantage of increased sensitivity gained by statistical analysis of quantitative data. Our screen was stringent as well as exhaustive – most other genes previously implied in many aspects of peroxisome formation, inheritance, and maintenance cluster on the top of our scoring list. We found that, although some strains defective in peroxisome proliferation have a strongly altered (reduced) peroxisome size, reduction in peroxisome number is a more exhaustive criterion to cover genes required for peroxisome formation and maintenance.

Of the genes with the strongest effect on peroxisome number, we decided to focus on \textit{YGR168C}, which we termed \textit{PEX35}. We show that Pex35 is a peroxisomal membrane protein, which has not been identified previously, probably due to its low expression level in glucose and its moderate, yet quantifiable, effect on peroxisome number and size. Deletion of \textit{PEX35} leads to reduction in peroxisome number, and overexpression of \textit{PEX35} to an increase in hyper-fissioned aggregated tiny peroxisomes or to an early block in the proliferation of peroxisomes. These results, together with the oleate growth phenotypes classify Pex35 as a \textit{bona fide} peroxin.

We found that C-terminally tagged Pex35 localizes in the vicinity of the Pex11-type of peroxisome proliferators Pex11 and Pex25, Pex34, and the small GTPase Arf1. All of these proteins are known to influence peroxisome abundance (Lay et al., 2006; Thoms and Erdmann, 2005; Tower et al., 2011), so it is attractive to speculate the
Pex35 is part of a regulatory unit that controls peroxisome fission, and therefore numbers, in the cell. The effect on Arf1 was particularly intriguing, because ARFs have previously been implicated in peroxisome formation, but their contribution has been poorly established. The mammalian ARF proteins Arf1 and Arf6 have been shown to be present on rat liver peroxisomes and to bind to peroxisomes in a GTP-specific manner. Interference with either Arf1 or Arf6 changes peroxisome morphology (Anthonio et al., 2009; Lay et al., 2005; Passreiter et al., 1998). In yeast, the ARF proteins Arf1 and Arf3 are required for peroxisome fission albeit in opposing manners (Anthonio et al., 2009; Lay et al., 2005). Additional support of the involvement of ARFs in peroxisome function comes from the finding that the expression of a dominant-negative Arf1 mutant, Arf1Q71L, blocks protein transport from the ER to the peroxisome in plant cells (McCartney et al., 2005). However, whether ARFs are actively recruited to peroxisomes, how ARFs affect peroxisomes and how this affects general cellular trafficking fidelity is still a mystery.

Initially, Pex11 was suggested to be the receptor of ARFs and coatomer on peroxisomes (Passreiter et al., 1998). This notion was questioned when it was found that mutations that prevent coatomer binding to Pex11 had no effect on peroxisome function in yeast or trypanosomes (Maier et al., 2000). Also the COPI inhibitor, brefeldin A, did not inhibit peroxisome biogenesis (South et al., 2000; Voorn-Brouwer et al., 2001). However, today there is new evidence for the involvement of membrane coats in peroxisome function (David et al., 2013; Dimitrov et al., 2013; Lay et al., 2006) and it is becoming clear that peroxisome biogenesis may be distinct from peroxisome maintenance by fission. Moreover, as we saw in our own work, fluorescence microscopy alone may not be a sensitive enough readout for such changes as sub-diffraction images can give more detailed information that may be easier to reconcile with genetic data.

In recent years reports on non-vesicular functions of ARFs are becoming more common (Jackson and Bouvet, 2014). We found that either deletion or overexpression of Pex35 drives Arf1 out of its physiological localization, mirroring the phenotype of an increased GAP function or a reduced GEF function, because the active, GTP-bound form of Arf1 is recruited to the membrane, whereas the inactive GDP-bound form is released from the membrane (Donaldson and Jackson, 2011). Of notice, the Arf1-GEF Sec7 was also found in the proximity of Pex35 in our DFHR screen (Supplementary table S4, rank 29), although the significance of that interaction remains to be established. While deletion of Pex35 elevates Arf1 protein levels (Figure S3A), we do not understand its mechanistic connection with Arf1. It may very well be that the upregulation of Arf1 is a consequence of reduced cellular function and cellular compensation mechanisms. In support of this, the ability of overexpression of Arf1 to reduce leakage of Kar2, is abolished in the absence of Pex35 (Figure 6D).

Our findings illuminate both, the role of Arf1 as a regulator of peroxisome abundance and its dependency on healthy peroxisome biogenesis. Pex35 may be the crucial link in these processes: Loss of focal localization of Arf1 in a peroxisome-defective ∆pex3 strain may be due to the loss of peroxisomal recruitment of Arf1 in this strain.

Intriguingly, Pex35 has domains of homology to three human proteins (Figure S4) two of which have membrane-shaping properties. One region of Pex35 is homologous to human Rtn1, an ER reticulon, and another with Epn4, an epsin-
related protein that binds the clathrin coat. Both proteins shape membrane curvature, which is essential for the fission process. In addition, potential homology was also found to Pxmp4, a human peroxisomal protein. These areas of homology suggest that Pex35 functions have been conserved to humans and they are suggestive of possible mechanism of Pex35 function.

Our work suggests that regulation of peroxisome size and number is linked tightly with secretory pathway functions. Physiological secretion is dependent on the presence of peroxisomes. On the other hand, peroxisome formation itself requires a functional secretory pathway. In this way, metabolic status of the cell could be coupled to secretion and growth in a simple and elegant mechanism. Such a cross-talk between these two systems could have dramatic effects on cellular homeostasis and hence would impact peroxisomes in health and disease.
Materials and methods

Yeast strains
All yeast strains in this study are based on the BY4741/2 laboratory strains (Brachmann et al., 1998). Strains created in this study are listed in Table S5. All genetic manipulations were performed using the Li-acetate, PEG, ssDNA method for transforming yeast strains (Gietz and Woods, 2006) using plasmids previously described (Janke et al., 2004; Longtine et al., 1998), as listed in Table S6. Primers for genetic manipulations and their validation were designed using Primers-4-Yeast (Yofe and Schuldiner, 2014), as listed in Table S7.

A query strain was constructed by introduction of an ER marker, Spf1-GFP, and a peroxisome marker, Pex3-mCherry (yMS1233). The query strain was then crossed into the yeast deletion and hypomorphic allele collections (Breslow et al., 2008; Giaever et al., 2002) by the synthetic genetic array method (Cohen and Schuldiner, 2011; Tong and Boone, 2006). Representative strains of the resulting screening library were validated by inspection for the presence of peroxisomal mCherry and ER-localized GFP expression. This procedure resulted in a collection of haploid strains used for screening mutants that display peroxisomal abnormalities.

Automated high-throughput fluorescence microscopy
The screening collection, containing a total of 5878 strains, was visualized in SD media during mid-logarithmic growth using an automated microscopy setup as described previously (Breker et al., 2013).

Automated image analysis
After acquisition, images were analyzed using the ScanR analysis software (Olympus), by which single cells were recognized based on the GFP signal and peroxisomes were recognized based on the mCherry signal (Figure S1). Measures of cell and peroxisome size, shape and fluorescent signals were extracted, and outliers were removed. A total of 5036 mutant strains were successfully analyzed, with a mean of 126±56 cells per strain (minimum of 30) that passed filtering (Table S1). For each mutant strain, the mean number of peroxisomes recognized by the software per cell was extracted, as well as the mean area (in pixels) of peroxisomes. Note that these are arbitrary units that may only be used to compare between strains, as resulting values are dependent on the parameters of image analysis and of the fluorescent markers used.

Microscopy
For follow up microscopy analysis, yeast growth conditions were as described above for the high-content screening. Imaging was performed using the VisiScope Confocal Cell Explorer system, composed of a Zeiss Yokogawa spinning disk scanning unit (CSU-W1) coupled with an inverted Olympus microscope (IX83; x60 oil objective; Excitation wavelength of 488nm for GFP, and 561nm for mCherry). Images were taken by a connected PCO-Edge sCMOS camera, controlled by VisView software. In the case of galactose induction of GALp-GFP-PEX35 (Figure 3F), yeast were transferred to the microscopy plate, and after adhering to the glass bottom, media
containing 2% galactose was used to wash the cells and during the time-lapse imaging.

Stimulated Emission Depletion (STED) microscopy

Strains were transformed with EYFP-SKL (plasmid PST1219) and analyzed as described (Kaplan and Ewers, 2015) using GFP nanobodies coupled to Atto647N (gba647n-100, Chromotek, Planegg-Martinsried). Slides were analyzed on a custom-made STED setup described previously (Göttfert et al., 2013). Images show unprocessed raw data. STED images shown in Figure 3 were rescaled by a factor of two using bicubic interpolation (Adobe Photoshop). The size of yeast peroxisomes was calculated as follows: Random peroxisomes were marked by manually drawing a ROI and the center of masses was determined. Peroxisome diameter was measured after drawing a line scan through the minor axis of the peroxisome. The full-width-half-maximum (FWHM) of the Gaussian fits for each peroxisomal structure was determined using an ImageJ macro by John Lim. Average size was quantified for more than 50 peroxisomes and statistical significance was calculated using a two-sample t-test (two-tailed, unequal variance).

Oleic acid growth experiments

Growth on oleate, oleate consumption and halo formation was analyzed as described (Nötzel et al., 2016; Rucktäschel et al., 2009; Thoms et al., 2008).

Isolation of peroxisomes and mitochondria

Preparation of peroxisomes and mitochondria followed published protocols (Flis et al., 2015; Thoms et al., 2011). Briefly, yeast cells were grown in YPD (1% yeast extract, 2% peptone, 2% glucose) to late exponential phase, transferred to YPO medium and grown for 48 hrs. Cells were harvested by centrifugation, washed with water and resuspended in buffer containing 0.1 M Tris, pH 9.4 and 1.5 mg/ml dithiothreitol (DTT). Spheroblasts were prepared by using 2 mg Zymolyase 20T per 1 g wet weight. Spheroblasts were recovered by centrifugation, washed twice with 1.2 M sorbitol, homogenized and lysed on ice using a Dounce homogenizer in breaking buffer (5 mM 2-(N-morpholino)ethanesulfonic acid (MES), 1 mM potassium chloride; 0.6 M sorbitol and 0.5 mM EDTA, 1 mM phenylmethanesulfonfonylfluoride (PMSF), pH 6.0(KOH)). Cell debris and nuclei were removed by centrifugation at 5000 rpm for 5 min. The resulting pellet was collected and subjected to two further rounds of resuspension in breaking buffer, homogenizing and centrifugation. The combined (post nuclear) supernatants (PNS) were centrifuged at 13,000 rpm in an SS34 rotor (Sorvall) for 30 min. The organelle pellets containing peroxisomes and mitochondria were collected and gently resuspended in a small Dounce homogenizer in breaking buffer plus 1 mM PMSF and centrifuged at low speed (3000 rpm) for 5 min to remove residual cellular debris. The supernatant containing the microsomal fraction was centrifuged at 15,000 rpm for 10 min. The pellet was resuspended in breaking buffer and loaded onto a Nycodenz step gradient (steps of 17%, 24%, 35% (w/v) in 5 mM MES, 1 mM potassium chloride, and 0.24 M sucrose, pH 6.0 (KOH)). Centrifugation was carried out in a swing out rotor (Sorvall AH-629) at 26,000 rpm for 90 min. Using a syringe, the mitochondrial and the peroxisomal fraction were collected from the top.
of the 17% and the 24%/35% interface, respectively. Purified organelles were diluted in four volumes of breaking buffer and centrifuged for 15 min at 15,000 rpm in an SS34 rotor. Pellets were stored at -20°C before determination of protein concentration and Western blot analysis.

Arf1 protein quantification

Yeast strains used for protein extraction (BY4741 as wild-type, GPD1prom-PEX35::natNT2 and Δpex35::natNT2) were grown in YPD (with clonat for Pex35 strains to stationary phase. they were back diluted in YPD to 0.2 OD, and were grown until they reached 0.6-0.8 OD. 2.5 OD₆₀₀ of yeast cells were harvested by centrifugation. Cells were resuspended in 100 µl distilled water, 100 µl 0.2 M NaOH was added, and cells were incubated for 5 min at room temperature, pelleted, resuspended in 75 µl SDS sample buffer (0.06 M Tris–HCl, pH 6.8, 10% glycerol, 2% SDS, 50 mM DTT, 2 mM PMSF and 0.0025% bromophenol blue), boiled for 5 min at 95°C and pelleted again. 25 µl supernatant was loaded per lane on SDS-PAGE (12% acrylamide) and then transferred to a nitrocellulose membrane by Western blotting. Primary antibody was rabbit anti-Arf1 (kind gift from Fromme lab) and secondary antibody was HRP-conjugated anti-rabbit. Membranes were exposed in LAS4000 machine using chemiluminescence reagents. Quantification was done by ImageJ relative to a Histone H3 loading control.

Protein-secretion assay

We analyzed protein secretion as previously described (Copic et al., 2009). Specifically, yeast strains grown in a 96-colony array format were pinned by the RoToR colony arrayer onto YEPD agar plates, and a nitrocellulose membrane was applied onto the plate immediately thereafter. Overnight incubation at 30°C allowed cell growth and ensured that secreted proteins were transferred to the nitrocellulose membrane. The membrane was removed from the plate and then washed (10 mM Tris-HCl, 0.5 M NaCl, pH 7.5) to release remaining cells. Secreted Kar2 was used as a reporter for secretion level, and was probed with a primary rabbit antibody (rabbit polyclonal antisera, kindly shared by Peter Walter). Next we used secondary goat anti-rabbit conjugated to IRDye800 (926-32211, LI-COR Biosciences) and scanned the membrane for infrared signal using the Odyssey Imaging System (LI-COR Biosciences).

Lipidomics

Quantitative lipid analysis was performed using a Triversa NanoMate ion source (Advion Biosciences, Inc.) coupled to a LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific), as previously described (Ejsing et al., 2009).

Glutathione measurements

The thiol/disulfide pair of roGFP2 equilibrates with the glutathione redox couple. RoGFP2 exhibits two fluorescence excitation maxima at ~400 nm and ~480 nm when fluorescence emission is followed at 510 nm. The relative intensity of fluorescence emission at each excitation maxima changes in opposing direction
dependent upon whether the roGFP2 thiols are reduced or forming a disulfide bond, thereby allowing ratiometric fluorescence imaging of the roGFP2 redox state. Dynamic E_{GSH} measurements were conducted as previously described in detail (Morgan et al., 2011).

Amino acid analysis
Amino acid analysis was conducted as described before (Nötzel et al., 2016).

Protein complementation assay screening
The protein–protein interaction screen was performed using the yeast DHFR PCA library as previously described (Tarassov et al., 2008). In brief, strains with Pex35 tagged at its C’ terminus with DHFR[1,2] (in MATa), or DHFR[3] (in MATalpha), and regulated by either the natural $PEX35$ promoter (yMS2585/6) or the strong TEF promoter (yMS2589/90), were mated with the complementary DHFR libraries in 1536 colony array agar plates. The resulting diploids were subsequently selected for growth in the presence of methotrexate for positive DHFR PCA reconstitution for 5 days at 30 °C. The colony array plates were scanned in two repeats and colony sizes were measured using the freely available Balony software (Young and Loewen, 2013), with each colony size normalized by row and column means (Table S4).
Acknowledgements
We thank Lihi Gal and Corinna Dickel for technical assistance, Monika Schneider and Ralph Krätzner for help with the amino acid analysis, Ariane Wolf and Anne Clancy for yeast library handling, and Hans Kristian Hannibal-Bach for assistance on lipidomics analysis. We would like to thank Ariane Wagner and Günther Daum for advice on organelle purification and for anti-Por1 antibodies, Peter Walter for anti-Kar2 antibodies and Chris Fromme for antibodies, useful discussions and ideas. We thank Nitai Steinberg for help with graphical design of figures and Jutta Gärtner for support.

Competing interest
No competing interests declared.

Author contributions
MS and ST conceived the study. IY, TPD, CSE, MS, EZ, and ST conceived and supervised the experiments. IY performed the majority of the experiments in this manuscript. SCh performed the high content screen. KS performed the STED experiments and the oleate growth assays. BM and TPD measured the redox status of peroxisomes. CJE performed the lipidomics analysis. ST performed peroxisome purification. SCo, KS, and ST conducted amino acid analyses. All authors analyzed the data. IY, MS, EZ, and ST wrote the manuscript.

Funding
This work was supported by the State of Lower-Saxony, Hannover, Germany [ZN2921 to M.S. and S.T.], and by European Research Council [CoG 646604 to M.S.]. Maya Schuldiner is an incumbent of the Dr. Gilbert Omenn and Martha Darling Professorial Chair in Molecular Genetics.
References

Table 1

Top hits of the microscopic screen for proteins involved in peroxisome formation. Abundance: Peroxisome number per cell [Z score]

<table>
<thead>
<tr>
<th>Rank</th>
<th>Gene</th>
<th>Protein</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YDL065C</td>
<td>Pex19</td>
<td>-7.6</td>
</tr>
<tr>
<td>2</td>
<td>YKR001C</td>
<td>Vps1</td>
<td>-6.0</td>
</tr>
<tr>
<td>3</td>
<td>YOL044W</td>
<td>Pex15</td>
<td>-5.5</td>
</tr>
<tr>
<td>4</td>
<td>YNL329C</td>
<td>Pex6</td>
<td>-5.5</td>
</tr>
<tr>
<td>5</td>
<td>YOR193W</td>
<td>Pex27</td>
<td>-5.3</td>
</tr>
<tr>
<td>6</td>
<td>YKL197C</td>
<td>Pex1</td>
<td>-5.2</td>
</tr>
<tr>
<td>7</td>
<td>YDR265W</td>
<td>Pex10</td>
<td>-4.9</td>
</tr>
<tr>
<td>8</td>
<td>YMR204C</td>
<td>Inp1</td>
<td>-4.7</td>
</tr>
<tr>
<td>9</td>
<td>YGR077C</td>
<td>Pex8</td>
<td>-4.7</td>
</tr>
<tr>
<td>10</td>
<td>YJL210W</td>
<td>Pex2</td>
<td>-4.6</td>
</tr>
<tr>
<td>11</td>
<td>YCL056C</td>
<td>Pex34</td>
<td>-4.4</td>
</tr>
<tr>
<td>12</td>
<td>YPL112C</td>
<td>Pex25</td>
<td>-4.4</td>
</tr>
<tr>
<td>13</td>
<td>YMR026C</td>
<td>Pex12</td>
<td>-4.1</td>
</tr>
<tr>
<td>14</td>
<td>YMR205C</td>
<td>Pfk2</td>
<td>-4.0</td>
</tr>
<tr>
<td>15</td>
<td>YMR163C</td>
<td>Inp2</td>
<td>-4.0</td>
</tr>
<tr>
<td>16</td>
<td>YLR191W</td>
<td>Pex13</td>
<td>-3.5</td>
</tr>
<tr>
<td>17</td>
<td>YGR168C</td>
<td></td>
<td>-3.2</td>
</tr>
<tr>
<td>18</td>
<td>YDR233C</td>
<td>Rtn1</td>
<td>-2.9</td>
</tr>
<tr>
<td>19</td>
<td>YLR126C</td>
<td></td>
<td>-2.8</td>
</tr>
<tr>
<td>20</td>
<td>YPR128C</td>
<td>Ant1</td>
<td>-2.7</td>
</tr>
<tr>
<td>21</td>
<td>YOR084W</td>
<td>Lpx1</td>
<td>-2.4</td>
</tr>
<tr>
<td>Rank</td>
<td>Gene</td>
<td>Protein</td>
<td>SM</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>YOR130C</td>
<td>Ort1</td>
<td>0.86</td>
</tr>
<tr>
<td>2</td>
<td>YKL184W</td>
<td>Spe1</td>
<td>0.67</td>
</tr>
<tr>
<td>3</td>
<td>YNL268W</td>
<td>Lyp1</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>YCR028C-A</td>
<td>Rim1</td>
<td>0.12</td>
</tr>
<tr>
<td>5</td>
<td>YDR234W</td>
<td>Lys4</td>
<td>0.81</td>
</tr>
<tr>
<td>6</td>
<td>YJL101C</td>
<td>Gsh1</td>
<td>0.22</td>
</tr>
<tr>
<td>7</td>
<td>YBR081C</td>
<td>Spt7</td>
<td>0.20</td>
</tr>
<tr>
<td>8</td>
<td>YJL071W</td>
<td>Arg2</td>
<td>0.21</td>
</tr>
<tr>
<td>9</td>
<td>YNL270C</td>
<td>Alp1</td>
<td>1.30</td>
</tr>
<tr>
<td>10</td>
<td>YER116C</td>
<td>Slx8</td>
<td>0.25</td>
</tr>
<tr>
<td>11</td>
<td>YGL143C</td>
<td>Mrf1</td>
<td>0.49</td>
</tr>
<tr>
<td>12</td>
<td>YBR251W</td>
<td>Mrps5</td>
<td>0.13</td>
</tr>
<tr>
<td>13</td>
<td>YNL005C</td>
<td>Mrp7</td>
<td>0.30</td>
</tr>
<tr>
<td>14</td>
<td>YHR147C</td>
<td>Mrpl6</td>
<td>0.19</td>
</tr>
<tr>
<td>15</td>
<td>YER185W</td>
<td>Pug1</td>
<td>1.51</td>
</tr>
<tr>
<td>16</td>
<td>YGL076C</td>
<td>Rpl7a</td>
<td>0.49</td>
</tr>
<tr>
<td>17</td>
<td>YMR142C</td>
<td>Rpl13b</td>
<td>0.49</td>
</tr>
<tr>
<td>18</td>
<td>YPR099C</td>
<td>Ypr099c</td>
<td>0.30</td>
</tr>
<tr>
<td>19</td>
<td>YDR028C</td>
<td>Reg1</td>
<td>0.37</td>
</tr>
<tr>
<td>20</td>
<td>YCL058C</td>
<td>Fyv5</td>
<td>0.67</td>
</tr>
<tr>
<td>21</td>
<td>YJL088W</td>
<td>Arg3</td>
<td>0.37</td>
</tr>
<tr>
<td>22</td>
<td>YDR448W</td>
<td>Ada2</td>
<td>0.36</td>
</tr>
<tr>
<td>23</td>
<td>YOL108C</td>
<td>Ino4</td>
<td>0.47</td>
</tr>
<tr>
<td>24</td>
<td>YOL095C</td>
<td>Hmi1</td>
<td>1.22</td>
</tr>
<tr>
<td>25</td>
<td>YDL077C</td>
<td>Vam6</td>
<td>1.06</td>
</tr>
<tr>
<td>26</td>
<td>YBR196C-A</td>
<td>Ybr196c-a</td>
<td>0.40</td>
</tr>
<tr>
<td>27</td>
<td>YDR017C</td>
<td>Kcs1</td>
<td>0.82</td>
</tr>
<tr>
<td>28</td>
<td>YBR282W</td>
<td>Mrpl27</td>
<td>0.45</td>
</tr>
<tr>
<td>29</td>
<td>YJR118C</td>
<td>Iim1</td>
<td>0.74</td>
</tr>
<tr>
<td>30</td>
<td>YNL252C</td>
<td>Mrpl17</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 2. Top hits of the *PEX35* synthetic genetic interactions screen. SM: Normalized colony size of Single Mutant; DM: Normalized colony size of Double Mutant; DM/SM: Colony size ratio double/single mutant
Figure 1. A high-content screen uncovers regulators of peroxisome size and number

A. Schematic representation of the high-content screen workflow. A query strain containing the peroxisomal marker Pex3-mCherry and the ER marker Spf1-GFP was crossed with strain collections of gene deletions and hypomorphic alleles. Following selections the resulting haploid yeast each contained both a single mutation and the markers. The libraries were imaged using a high-throughput automated microscope. Images were analyzed by software assisted single cell
and object (peroxisome) recognition, allowing the identification of mutants that show aberrant peroxisome size or number.

B. Distribution of Z score of mean peroxisome size for successfully analyzed mutant strains. Mutants of peroxisomal membrane proteins are marked in red, and other peroxisomal proteins marked in black.

C. Distribution of Z score of mean peroxisome number per cell for successfully analyzed mutant strains. A high enrichment of peroxisomal membrane protein mutants and Δpex mutants is found in the group of decreased peroxisome number, as illustrated by the inset pie chart, presenting functional classes of the 30 mutants in this group. YGR168C is a previously uncharacterized gene found within this group. Mutants of peroxisomal membrane proteins are marked in red, and other peroxisomal proteins marked in black.
Figure 2. Deletion or overexpression of YGR168C affects peroxisome number and function.

A. Examples of mutants from the high-content screen showing aberrant peroxisome content. Images of strains from the high-content screen containing Pex3-RFP and Spf1-GFP. Peroxisome size is increased in Δvps1, and peroxisome number is decreased in Δvps1, Δpex12, and Δygr168c, compared to a WT strain. Scale bar 5 µm. Graph shows quantification of these parameters (see also Figure S1). Error bars indicate s.e.m., n>72, *** p<0.01.

B. Reduction in peroxisome number in Δygr168c is independent of the peroxisomal marker used. The number of peroxisomes per cell was analyzed by several peroxisomal membrane or matrix proteins tagged with GFP, either in a WT or Δygr168c background. Decrease in peroxisome number in Δygr168c is seen with all peroxisome markers used. Error bars indicate s.e.m., n=6. *** p<0.01 (Δygr168c vs. WT t-test for each marker)
C. Overexpression of YGR168C reduces the number of peroxisome puncta. Images of strains with Pex3-GFP and either WT, Δygr168c, or overexpressed (OE) - YGR168C. Scale bar 5 µm.

D. Peroxisome number is affected in ygr168c mutants grown in glucose and oleate. Quantification of cell mean peroxisome number per cell in WT, Δygr168c, or OE-YGR168C, visualized after growth in either glucose (gray) or oleate (red) media. While an increase in peroxisome number is observed in oleate compared to glucose for each strain, peroxisome number is decreased in the mutants compared to WT in glucose media, and in OE-YGR168C in oleate. Error bars indicate s.e.m., n>731. *** p<0.01.
Figure 3. STED microscopy reveals characteristics of wild-type and ygr168c peroxisomes.

Stimulated Emission Depletion (STED) microscopy: wild-type, Δygr168c, and OE-YGR168C strains expressing EYFP-SKL as a peroxisomal marker, labeled with anti-GFP nanobodies. Scale Bar 200 nm. Size of peroxisomes was determined as full-width-half-maximum (FWHM) of Gaussian fit. Panels in A-C show examples.

A. Super-resolution imaging of wild-type peroxisome.

B. Peroxisome diameter in Δygr168c is not altered.

C. Overexpression of YGR168C causes an increase in the apparent size of peroxisomes. In conventional light microscopy, these aggregates appear as enlarged single peroxisomes. Sub-diffraction imaging reveals that enlarged peroxisomes consist of multi-lobular structures, whereby the individual substructures appear as peroxisomes of wild-type-like morphology. The distances between the maxima vary between 137 and 174 nm.

D. Mean diameter of wild-type peroxisomes is 174 nm ± 8 nm (s.e.m.). The size difference between wild-type and knockout peroxisomes (196 nm ± 7 nm (s.e.m.)) was not significant (p= 0.1). Mean diameter of OE-YGR168C peroxisome clusters is 285 nm (± 16 nm s.e.m.) (p=6x10^-6). n > 50 in all cases.
Figure 4. *YGR168C* (*PEX35*) is a new *PEX* gene.

A. Ygr168c co-localizes with a peroxisomal marker. Overexpression of N-terminally GFP-tagged Ygr168c displays colocalization with Pex3-mCherry, with a notable phenotype of about one large peroxisome per cell (top). Overexpression of
Ygr168c with a C-terminal mCherry tag displays colocalization with Pex3-GFP (bottom) with wild-type peroxisome abundance. Scale bar 5 µm.

B. Predicted transmembrane topology of Ygr168c (Pex35). Transmembrane helices were predicted by the TMHMM algorithm (v2.0). The schematic representation demonstrates the five transmembrane domains, as well as a long cytoplasmic C terminus of the protein.

C. Identification of GFP-Ygr168c on purified wild-type peroxisomes isolated from oleate-induced cells. Western blot analysis of PNS (post-nuclear supernatant) and cytosol and peroxisomal and mitochondrial fractions from Nycodenz step gradient.

D. Deletion of PEX19 leads to cytosolic localization and ER accumulation of Ygr168c. Scale bar 5 µm.

E. Overexpression of Ygr168c1-107 (including the N-terminal region and the first two predicted transmembrane domains) tagged with mCherry displays colocalization with Pex3-GFP, and also shows localization to the ER. Scale bar 5 µm.

F. ygr168c mutants grow more slowly in media containing oleic acid as the sole carbon source. WT, Δygr168c, OE-YGR168C, and Δpex3 strains were grown in oleic acid for 128 h, and OD_{600} was measured to assess growth. ygr168c mutants display a significant growth defect, at an intermediate level between WT and the Δpex3. Error bars indicate s.d., n=4.

G. YGR168C mutants consume less oleic acid. Media from the end-point of the experiment described in panel D (128 hours) were used to assess the relative oleic acid consumption of each strain. Error bars indicate s.d., n=4. ** p<0.05.

H. Induction of GFP-Ygr168c leads to accumulation of the protein in peroxisomes, and to aberrant peroxisome content. A strain expressing both Pex3-RFP and GFP-Ygr168c under control of the inducible GAL1 promoter was transferred from glucose to galactose media. Time lapse imaging was carried out starting from 90 m (t=0). GFP-Ygr168c becomes highly induced under these conditions and colocalizes with Pex3-RFP over time. Notably, cells in which GFP-Ygr168c is not expressed (arrows) display normal peroxisome content, while cells in which expression is induced display one large peroxisome in each cell. Scale bar 5 µm.
Figure 5. Pex35 is found in proximity to peroxisomal membrane proteins as well as to Arf proteins.

A. Protein complementation assay for Pex35 interactions reveals a physical proximity to the Pex11, Pex25 and Arf1. Query strains with Pex35 tagged with either the C’ or N’ fragment of the DHFR enzyme were mated with collections of strains expressing the other half of DHFR in the opposing mating type. Interaction between the Pex35 (bait) and a screened protein (prey) results in
complementation of the DHFR enzyme, which in turn enables growth on the methotrexate medium, as shown for Ant1 and Pex19.

B. Pex35 is in proximity to Pex11, Pex25 and Arf1. Each of the three indicated Pex35-prey combinations, shown in the center of each image, display large colonies, in contrast to the neighboring colonies with other Pex35-prey combinations.

C. Summary of proteins in proximity to Pex35. Fold increase colony size: the maximum colony size of four combinations of the DHFR screen (overexpression or native promoter for \textit{PEX35} bait, and two DHFR fragment collections).
Figure 6. Pex35 and peroxisomes control Arf1 distribution and function.
A. Arf1 distribution is impaired in pex35 mutants. While Arf1-RFP is localized in punctate structures (potentially including Golgi and mitochondria) and partially co-localizes to peroxisomes (white arrows) in wild-type strains, deletion or overexpression of PEX35 results in re-distribution to other internal membranes and loss of punctate localization. Scale bar 5 µm.

B. Synthetic effects of PEX35 and ARF1 mutations. Pex3-GFP was used as a marker to quantitate peroxisome abundance in combinations of Δarf1 and WT, Δpex35, or OE-PEX35. Scale bar 5 µm.

C. Quantification of peroxisomal content reveals that deletion of ARF1 aggravates the Δpex35 phenotype of reduced peroxisome number. Notably, Δarf1 deletion compensated for the effect of PEX35 overexpression on peroxisome abundance. Error bars indicate s.e.m., n>197, *** p<0.01.
D. Protein secretion analysis of PEX35 and ARF1 mutants. Images (left) and quantification (right) of a western blot of Kar2 secreted from six colony repeats per strain. Induction of the UPR (by deletion of SPF1) or loss of peroxisomes (by deletion of PEX3), as well as overexpression of GFP-Pex35 or ARF1 significantly reduced secretion levels. Deletion of PEX35 compensated the effect of ARF1 overexpression. Error bars indicate S.D, n=6. *** p<0.01, * p<0.1.

E. Deletion of PEX3 affects cellular Arf1-RFP distribution. In Δpex3, Arf1-RFP loses its localization to defined puncta. Scale bar 5 µm.
Supplementary Data

Pex35 is a regulator of peroxisome abundance

Ido Yofe, Kareem Soliman, Silvia G Chuartzman, Bruce Morgan, Uri Weill, Eden Yifrach, Tobias P Dick, Sara J Cooper, Christer S Ejsing, Maya Schuldiner, Einat Zalckvar, Sven Thoms

Supplementary Figures S1-S4
Supplementary Tables S1-S7

Supplementary Figures

Figure S1. In silico recognition of single cells and peroxisomes.

A. Image of merged channels of Pex3-mCherry and Spf1-GFP. Images were processed for background subtraction using ImageJ. The images are of a single position of a WT strain from the genome wide screen described in figure 1A (strain yMS1233). The box indicates regions highlighted in C-F.

B. Screenshot of the analysis software’s output for the images presented in A, with recognition of single cells (yellow boxes) and peroxisomes (purple boxes).

C. Highlighted region from A showing a raw merged channel image.

D. Highlighted region from B showing the analysis output.

E. Image of the GFP channel only, with yellow boxes representing single cells that were recognized by the software (yellow boxes in D).

F. Image of the mCherry channel only, with purple arrows pointing to peroxisomes identified by the software (purple boxes in D).
Figure S2. Phenotypic characterization of PEX35 (YGR168C)

A. Super-resolution microscopy reveals the phenotype of PEX35 deletion and overexpression. Examples of STED microscopy images of strains expressing EYFP-SKL as a peroxisomal marker, labeled with anti-GFP nanobodies. Scale Bar 200 nm

B. Deletion of PEX3 causes mislocalization of Ygr168c. GFP-Ygr168c expressed under control of a constitutive promoter redistributes to the cytosol in the absence of mature peroxisomes in a Δpex3 background. Scale bar 5 µm.
C. Growth of WT and Δygr168c is indistinguishable in rich media. Mean OD$_{600}$ of the six repeats is presented, with error bars indicating the standard deviation.

D. ygr168c mutants do not consume oleic acid efficiently. WT, Δygr168c, OE-GFP-YGR168C, and Δpex3 strain cultures were plated in a dilution series with increasing dilution from left to right on oleic acid or YPD media. ygr168c mutants display a reduced halo, attesting to reduced ability to metabolize oleate.

E. The N-terminal GFP-tag worsens the oleate growth phenotype of YGR168C overexpression.

F. Deletion of PEX35 impairs peroxisomal glutathione homeostasis. WT, Δpex35, and OE-PEX35 strains were introduced with a plasmid expressing Grx1-roGFP2-SKL to probe for peroxisomal glutathione levels. Measurements of probe oxidation over time showed that the peroxisomal glutathione pool became less oxidized in Δpex35, and more oxidized in OE-PEX35, compared to the WT strain.

G. Amino acid analysis of Δpex35, OE-GFP-PEX35, and Δpex3 stains. Amino acid levels are significantly changed in PEX35 mutations. Metabolites from yeast strains grown into exponential growth phase were methanol-extracted and analyzed by an amino acid analyzer. Nor-leucine was spiked into the experiment as an internal control. Amino acid levels are displayed relative to wild type. n = 13 (wild-type), n = 8 (Δpex35), n = 4 (OE-GFP-PEX35), N =2 (Δpex3). Two-sided student’s t-tests, *- p < 0.05.
Figure S3. Effects of Pex35 on Arf1 levels and distribution.

A. Cellular Arf1 protein levels are affected by mutations in PEX35. Quantitation represents three independent biological replicates (Western blot); one of which is shown below the graph. Error bars: SD.

B. Distribution of Arf1 on peroxisomes and mitochondria isolated from wild-type and Δpex35 oleate-induced peroxisomes. Peroxisomes were labelled by tagging Pex3. Western blot analysis of peroxisomal and mitochondrial fractions from Nycodenz step gradient and PNS (post-nuclear supernatant) and cytosol samples.
Remote homolog detection with HHpred

![Diagram of protein structures](image)

Figure S4
Figure S4. Pex35 is a remote homolog of several human proteins.

A. Regions of Pex35 are homologous to regions in the human proteins Epn4, Rtn1, and the peroxisomal membrane protein Pxmp4. A schematic representation of the homologous regions, as identified by the HHpred algorithm. Protein coding sequence is represented by rectangles, with homologous regions portrayed by different colors. Amino acid coordinates of the homologous regions are indicated. Dashed lines illustrate the homology found between the regions. Black lines with text labels indicate location of conserved domains in the human proteins: The epsin (Eps15 interactor) N-terminal homology domain of Epn4 (ENTH, pfam01417), the Tim17 domain of Pxmp4 (Tim17, pfam02466), and the reticulon domain of Rtn1 (Reticulon, pfam02453). Hs, Homo sapiens; Sc, Saccharomyces cerevisiae.

B. HHpred alignment of homologous regions of Pex35 with the three human proteins described in A. The alignment with Pxmp4 was found when the query was Pex35 C-terminal 168 amino acids, as indicated by the amino acid position label (209-376).

Supplementary tables (Excel files)
Table S1. Results of a high-content screen for regulators of peroxisome size and abundance.
Table S2. Measurements of lipid species in WT and Δpex35.
Table S3. Results of the synthetic genetic interaction assay for Δpex35.
Table S4. Results of the protein complementation assay screen for Pex35 interacting proteins.
Table S5. List of yeast strains used in this study.
Table S6. List of plasmids used in this study.
Table S7. List of primers used in this study.