Epithelial and stromal circadian clocks are inversely regulated by their mechano-matrix environment

Jack Williams, Nan Yang, Amber Wood, Egor Zindy, Qing-Jun Meng, Charles H. Streuli
Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK

Emails: jack.williams-8@postgrad.manchester.ac.uk; nan.yang@manchester.ac.uk; amber.wood@postgrad.manchester.ac.uk; egor.zindy@manchester.ac.uk; qing-jun.meng@manchester.ac.uk; cstreuli@manchester.ac.uk

This was a joint study by the Streuli and Meng labs.

Correspondence to: qing-jun.meng@manchester.ac.uk; cstreuli@manchester.ac.uk

Subject area: Cell biology

Keywords: Circadian clocks, epithelial cells, fibroblasts, breast, lung, epidermis, circadian gene expression

Abbreviations: ECM, extracellular matrix; MEC, mammary epithelial cell

SUMMARY STATEMENT

Cell-matrix interactions control the circadian clock in mammary epithelia. We discovered, unexpectedly, that in mammary gland, lung and skin, the mechano-matrix inversely regulates circadian clocks in epithelia and fibroblasts.
ABSTRACT

The circadian clock is an autonomous molecular feedback loop inside almost every cell in the body. We have shown that the mammary epithelial circadian clock is regulated by the cellular microenvironment. Moreover, a stiff extracellular matrix dampens the oscillations of the epithelial molecular clock. Here, we extend this analysis to other tissues and cell types, and identify an inverse relationship between circadian clocks in epithelia and fibroblasts. Epithelial cells from mammary gland, lung and skin have significantly stronger oscillations of clock genes in soft 3D microenvironments, compared to stiff 2D environments. Fibroblasts isolated from the same tissues show the opposite response, exhibiting stronger oscillations and more prolonged rhythmicity in stiff microenvironments. RNA analysis identified that a subset of mammary epithelial clock genes, and their regulators, are upregulated in 3D microenvironments in soft compared to stiff gels. Furthermore, the same genes are inversely regulated in fibroblasts isolated from the same tissues. Thus, our data reveal for the first time an intrinsic difference in the regulation of circadian genes in epithelia and fibroblasts.

INTRODUCTION

Most organisms have evolved intrinsic time-keeping mechanisms to entrain their cells to respond to challenges imposed by variations in time. Cell-autonomous circadian clocks regulate patterns of gene expression over 24-hour time frames. The body’s master clock in the suprachiasmatic nucleus generates robust circadian rhythms that are aligned to day and night cycles, and coordinates the body’s time-keeping (Dibner et al., 2010; Reppert and Weaver, 2002; Roenneberg and Merrow, 2005; Takahashi et al., 2008). This clock machinery controls tissue-specific sets of genes - for example in neurons vs glia, pancreatic islet-α vs β cells, atria vs ventricle in the heart, cartilage vs tendon (Guilding et al., 2009; Petrenko et al., 2017; Tong et al., 2013; Yang and Meng, 2016; Yeung et al., 2014). Despite advances in understanding circadian rhythmic outputs, less is known about how these highly conserved molecular clocks adapt to the local niche within peripheral tissues.

In a relatively soft tissue, the mammary gland, several hundred genes are under circadian control (Blakeman et al., 2016). However, the strength of their daily regulation is dependent on the mechano-biological nature of tissue context (Yang et al., 2017). Interestingly, the mechanical extracellular matrix (ECM) microenvironment surrounding epithelial ducts stiffens during ageing, contributing to reduced circadian rhythms in older individuals.

Epithelial organs are comprised of epithelia and subtending stroma containing fibroblasts, as well as endothelial, immune, and neuronal cells. The epithelia carry out specialist tissue functions, while fibroblasts contribute to the cellular microenvironment consisting of stromal ECM. This ECM impacts both on epithelial cell function and builds overall tissue architecture. Importantly, different cell types can reside in regions of distinctive mechano-biological stiffness. For example, mammary gland contains areas of soft adipose, while the stromal/ductal areas are denser (Muschler and Streuli, 2010). In distinct individuals, the stroma contains regions of high or low mammographic density (Sherratt et al., 2016). This is due to patient-specific regions of the stroma having different biological stiffness (McConnell et al., 2016).

Matrix-secreting fibroblasts provide a model to understand peripheral circadian clocks (Balsalobre et al., 1998). Upon synchronization, these cells demonstrate remarkable circadian rhythms on stiff substrata, such as cell culture plastics, contrasting with weak clocks that we observed in epithelial cells on the same substrata. This suggests that fibroblast clocks may differ from epithelia in terms of their response to ECM stiffness.
To reconcile these seemingly conflicting results, we investigated circadian clocks in primary epithelia and fibroblasts isolated from the same tissues. We discovered an inverse mechano-matrix control of epithelial and stromal circadian clocks in cells isolated from mammary gland, lung and skin. Thus, although cells originating from the epithelial and mesenchymal compartments of tissues contain circadian clocks, the role of the mechano-matrix environment in regulating clocks is opposite in these different cell types.

RESULTS & DISCUSSION

Mechano-sensitivity of mammary epithelial circadian clocks

Cell lines often have dramatically reduced tissue-specific functions, partly arising through extensive culture on non-physiological substrata. We therefore used primary cells isolated directly from mice, culturing them on substrata reflecting the stiffness of tissues in vivo.

We obtained mammary epithelial cells (MEC) from non-pregnant glands of PER2::Luciferase clock reporter mice, which expressed epithelial-specific keratins (Fig 1A) (Pullan and Streuli, 1996; Yoo et al., 2004). The cells were cultured on soft Matrigel in 3D, or on collagen-coated stiff plastic dishes in 2D (Fig 1B), followed by real-time bioluminescence photon counting using a LumiCycle. Under these conditions, the cells have dramatic differences in their ability to express tissue-specific genes, for example those encoding milk proteins (Streuli et al., 1991). Cells on 3D soft substrata showed high levels of synchronous circadian clocks (Fig 1C). In contrast, those on 2D stiff substrata had weak clocks that were several times lower than those in 3D-cultured cells.

To confirm that MEC clocks are controlled by microenvironmental stiffness, cells were cultured within both soft and stiff ECM 3D hydrogels under identical conditions apart from the gel’s stiffness (Wood et al., 2017) (Fig 1D). Atomic force microscopy revealed that the ‘stiffness’ of the stiff gel (100 kPa) was 2.5-fold higher than the softer gel (Fig 1E).

Cells formed clusters within the gels, where the extent of tissue-specific gene expression and cell function was dependent on ECM stiffness (data submitted elsewhere). By measuring circadian clocks within MECs cultured in soft and stiff ECM, we found that the former showed considerably higher amplitude and magnitude of clock oscillations (Fig 1F).

Thus, freshly isolated MECs express circadian clocks but they are under stringent mechano-matrix control.

Mechano-sensitivity of mammary fibroblast clocks

We determined whether there is a similar mechano-matrix regulation of circadian clocks in stromal cells from the same tissue. Mammary fibroblasts were isolated from fresh tissue explants using FACS, being negatively sorted first for PECAM-1, Ly-51, Ter119 and CD45 (endothelial, immune, and red and white blood cells), and then for EpCAM and α6-integrin (epithelia). The resulting mammary fibroblasts were validated by confirming that they expressed vimentin but not keratin-containing intermediate filaments (Fig 1G).

We examined the expression of circadian clocks in fibroblasts plated within Matrigel in 3D, or on plastic in 2D (Fig 1H). In contrast to the epithelial cells, primary fibroblasts showed much stronger clocks when cultured on the stiffer substratum in 2D (Fig 1I, Supp Fig 3). Similarly, the cells cultured within 3D hydrogels (Fig 1J) showed much stronger clocks in the stiffer microenvironment than in the soft one (Fig 1K).
Thus, regardless of mammary gland cell type, the strength of their circadian clocks is dependent on the mechanical stiffness of the ECM that they are in contact with. However, primary cultures of mammary epithelia and fibroblasts show opposite responses to the mechano-environment, with epithelial clocks being stronger in a soft matrix and fibroblastic clocks being strongest in stiff matrix. To the best of our knowledge, this is the first direct comparison of the epithelial and stromal clocks from the same tissue.

Mechano-sensitivity of lung and epidermal clocks

To determine whether this response is general, we examined primary cultures of cells from lungs and skin. For lungs, we isolated epithelia and fibroblasts using established methods (Fig 2A). When the epithelia from this tissue were plated onto a soft 3D ECM, their clocks showed high amplitude oscillations, but they were modest on stiff 2D ECM (Fig 2B). The opposite profile of clock strength was seen in fibroblasts from the same tissue (Fig 2C).

Studies with keratinocytes and the subtending dermal fibroblasts isolated from skin revealed a similar contrary ECM-dependence of clock strength (Fig 2D-F). Higher amplitude (and magnitude in most cases) rhythms were observed in epithelia on softer 3D gels, while circadian rhythms in fibroblasts from the same tissue were stronger within a stiffer microenvironment.

Thus, epithelia have strong circadian clocks within a mechanically soft microenvironment, whereas stromal fibroblastic cells maintain robust clocks within a stiffer ECM-locale.

Mechano-matrix control of cell type-specific clock gene expression

To understand the link between mechanical properties of the ECM and clock gene expression, we first examined average expression levels in unsynchronised MECs cultured in soft and stiff matrices.

Several clock genes and their regulators, RORα/γ, Bmal1, Per2 and PGC1α, were mechano-matrix-dependent, with higher levels of expression in soft 3D ECM (Fig 3A and Supp Fig1). RORα/γ and PGC1α are nuclear hormone receptors that positively regulate Bmal1 transcription (Canaple et al., 2003; Guillaumond et al., 2005; Yang et al., 2006).

Next, parallel MEC cultures were plated on Matrigel- and collagen-coated plates, or inside soft and stiff 3D alginate gels, then entrained to have robust circadian timekeeping in a temperature-cycling incubator (36.5ºC/38.5ºC) for 48h (Fig 3B). This protocol maintains strong clock oscillations for several days after removing temperature cycles (Fig 3C). RNA was extracted every 4h for the subsequent 48h, enabling circadian regulation of gene expression to be examined. A control gene, collagen 2a1, showed no circadian regulation (Yang et al., 2017).

In Matrigel-cultured cells, there was a prominent increase in the amplitude and magnitude of the expression of several circadian genes, RORα, RORγ, PGC1α, Bmal1, and Per2, (Fig 3D). These genes were under much stronger circadian control when cultured in soft vs stiff 3D hydrogels (Fig 3E). Of note, some other clock genes tested showed no change in response to altered matrix stiffness (Per1, RORβ, Rev-erbβ, Niiii3, TEF and Npas2).

To determine whether an inverse control occurred in fibroblasts, we examined expression profiles of their core clock genes. The expression of RORα, RORγ, Bmal1 and PGC1α was significantly higher within a stiff mechano-environment (Fig 4A-D).
Thus, the mechanism linking the mechano-physical nature of the ECM to circadian clocks occurs at the level of gene expression. Although there is mechano-matrix-dependent gene expression in both cell types, it occurs inversely in epithelia and fibroblasts.

Clock mechano-sensitivity is mediated through the cytoskeleton

To explore how the mechano-matrix links to circadian clock gene expression, we examined the role of the actin-cytoskeleton (Yang et al., 2017). This structure acts as a mechanical link between the edge of the cell that contacts the ECM, whether soft or stiff, and the nucleus. The cytoskeleton thereby provides communication between the cell exterior and transcriptional machinery.

MECs cultured on plastic were treated with the myosin-II inhibitor, Blebbistatin, which suppresses cytoskeleton formation, reflecting the effect of plating cells in soft ECM. There was increased expression of clock genes, including \(ROR\alpha, ROR\gamma, Bmal1 \) and \(PGC1\alpha \) (Fig 4E-H), and this effect was less pronounced in fibroblasts (Supp Fig 4).

Thus, actin inhibition in MECs on stiff 2D substrata has a similar outcome to plating cells on soft ECM, revealing that mechanical sensing of the microenvironment is mediated via the actin cytoskeleton.

Conclusions

Our results reveal that circadian clocks are present within primary cultures of both epithelia and fibroblasts. Importantly, there is an inverse relationship between epithelial and fibroblast clocks in their responses to the mechano-matrix environment. Thus, in contrast to clocks in epithelial cells that favour softer matrix, fibroblasts prefer a stiffer matrix to maintain robust circadian rhythms.

Mechanistically, key regulators of the core clock gene \(Bmal1 \), including \(ROR\alpha, ROR\gamma \) and \(PGC1\alpha \), were under mechanical control in MECs in a cell-matrix-dependent manner. The same genes were inversely regulated in fibroblasts.

The mechano-control of epithelial clocks is implicated in ageing and disease (Yang et al., 2017). Now we discovered an opposite mechano-matrix response in fibroblasts. Core circadian clock mechanisms are conserved among tissues, but outputs are cell-type and tissue-dependent. Disparities in the circadian phase of different cell types within the same tissue, such as in hair follicles, have been suggested (Janich et al., 2013). We now provide the first example of opposite clock responses to the same stimulus in epithelia vs fibroblasts.

SRF and MRTF provide possible molecular links between stiffness and the clock. Indeed, the organisation of actin filaments changes throughout the day, driving clock gene transcription (Gerber et al., 2013). Activation of MRTF resets the circadian clock, in part by stimulating transcription of \(Per2, ROR\alpha \) and \(Dbp \) (Esnault et al., 2014). Further work will determine whether the regulation of this pathway is conserved but opposite, between epithelia and fibroblasts.

Forthcoming studies in this area will lead to a deeper understanding of how clocks are mechanistically controlled by their local ECM niches. They may also reveal how dysregulated tissue mechanics alters homeostasis during ageing and in malignancy (Paszek et al., 2005; Sherratt et al., 2016). Interestingly, breast tissue stiffness varies amongst different individuals in the human population - those with a ‘stiffer’ stroma are more likely to develop breast cancer (Blakeman et al., 2016; McConnell et al., 2016). Understanding genome-wide clock targets in epithelia vs fibroblasts may help to determine cell-type specification of circadian clock functions.
MATERIALS & METHODS

Primary mammary epithelial and fibroblast cell culture: Primary MECs were purified from inguinal mammary glands of 2-3-month-old virgin mice and cultured in medium as described (Pullan and Streuli, 1996). Cells were stained and sorted using FACs, plated onto collagen-I-coated plastic petri-dishes for 2D monolayer cultures, basement membrane-matrix (Matrigel; BD Biosciences) to form 3D acini, or in Alginate gels. Fibroblasts were cultured in DMEM containing 10% FCS (Biowittaker), 50U/ml penicillin/streptomycin, 0.25 mg/ml fungizone and 50 mg/ml gentamycin). For all bioluminescence recordings, the medium was changed and all the cells were cultured in the same media.

Fluorescence-activated cell sorting: Primary MECs were pelleted at 4350-rpm for 5’ and washed in Ca²⁺ and Mg²⁺ free PBS for 5’, treated with trypsin-DNase I solution (0.05% Trypsin and 0.02% EDTA in Ca²⁺ and Mg²⁺ free PBS with 2000U/ml DNase I, NEB DNase buffer and 1% Penicillin/Streptomycin) for 4’ at 37°C. 10%FCS was added, cells were washed, filtered through a 45µm cell strainer, counted, antibodies were added, cells were stained for 45’, incubated for 45’ with antibodies to CD45 APC-Cy7, CD31-Biotin, Ter119-Biotin, BP-1-biotin, Streptavidin-APC-Cy7, CD326-APC and CD49f-eFlour450, washed and filtered through a 45-µm strainer into FACS-capped tubes.

Biotin-conjugated antibodies were detected using Streptavidin-APC-Cy7. Cells were first sorted using APC-Cy7 into what are nominally called lineage negative (Lin⁻) and lineage positive (Lin⁺). Lin⁻ cells include haematopoietic cells, endothelial cells and a proportion of the stromal compartment (largely immune cells) and are not used for subsequent sorts. Lin⁺ cells are then sorted using CD326-APC and CD49f-eFlour450, producing three distinct populations, a CD326low CD49flow fibroblast population, a CD326high CD49flow luminal population, and a CD326high CD49fhigh basal population (Supp Fig 2).

Lung epithelial cell culture: Murine trachea were dissected, digested overnight in 0.15% Pronase, washed, treated with DNase I, plated onto collagen I coated plastic petri-dishes for 2D monolayer cultures or Matrigel (BD Biosciences) for 3D structures. (Lam et al., 2011).

Lung fibroblast cell culture: Primary lung fibroblasts were isolated from 2-3 month-old PER2::LUC mice (Meng et al., 2008b). Lungs were washed with ice-cold PBS, before being mechanically dissociated and enzymatically digested in a 100U/ml Collagenase IA solution at 37°C. Cells were then centrifuged, strained and plated on either 2D collagen-coated plastic or into Matrigel.

Keratinocyte culture: Keratinocytes were harvested from PER2::LUC mice (Chacón-Martínez et al., 2017). Whole skin isolates from the back of 6-day old mice were digested in 0.08% trypsin for 1h. Epidermis and dermis were then separated, and epidermal cells were strained through 45µm cell strainers and pelleted at 900rpm for 3’. For 2D monolayer culture, cells were cultured on Fibronectin-coated plastic. For 3D culture, cells were cultured in Matrigel, with media supplemented with 2% Matrigel.

Dermal fibroblasts: Dermis and epidermis were separated; the dermis was minced into 1mm² pieces and incubated for 2h in Collagenase (400U/ml), filtered through a 70µm strainer, pelleted, resuspended, and plated onto fibronectin-coated plastic or in Matrigel.

Temperature synchronisation: Cells were synchronised using a programmable incubator. The program alternates between 38.5°C and 36.5°C every 12h, for 48h. After 48h, the incubator temperature returns to 37°C for 24h. At this point, cell harvesting for RT-qPCR begins (named circadian time 0, CT0). Cells were transferred from the incubator to the cell
culture hood using a thermal plate at 37°C. Cells remained on the thermal plate until RNA extraction or being placed into a LumiCycle (Actimetrics) or photomultiplier devices (PMT).

Bioluminescence recording: Tissues/cells cultured in 35mm dishes were synchronised as described above. Prior to placing into the Lumicycle, normal culture media was removed and rapidly replaced with pre-warmed HEPES- and sodium bicarbonate- buffered recording media. The bioluminescence values for all cell types were recorded in this media. Culture dishes were sealed with coverslips and vacuum grease and placed into the LumiCycle or photomultiplier devices. Baseline subtraction was performed using a 24-hour moving average algorithm (Meng et al., 2008a).

RT-qPCR: n=3 biological replicates, each with 16 mice, pooled to form 36 cultures per condition. Cells were cultured in 12-well plates. At each time-point, 3 cultures per condition were used for RNA extraction with Qiagen RNeasy. cDNA was prepared using a High Capacity RNA-to-cDNA Kit and analysed for gene expression using quantitative real-time PCR with TaqMan (Applied Biosystems) chemistry. RT-qPCR was performed in parallel with all biological replicates, with two technical replicates per culture. Primer/probe mixes (Applied Biosystems) were - Per2: Mm00478113_m1; Bmal1/Arntl: Mm00500226_m1; Clock: Mm00455950_m1; Nr1d1/Rev-erba: Mm00520708_m1; Cry1: Mm00514392_m1; Dbp: Mm01194021_m1; RORa: Mm00443103_m1; RORc: Mm01261022_m1; Bcar3: Mm00600213_m1; PrlR: Mm04336676_m1; Col2a1: Mm01309565. Results were normalized to the values for Gapdh (Mm99999915_m1) expression, using the 2_∆∆Ct method.

Immunofluorescence: Indirect immunofluorescence was carried out on cells grown on ECM-coated coverslips. For fibroblasts, positive staining was for vimentin, and for epithelial cultures, staining was for a specific cytokeratin, then imaged on a Zeiss Axioplan2 using a 63x / 1.40 Plan Apochromat objective and analysed with Axiovision v4.8.2 (Zeiss). Specific band pass filter sets for DAPI, FITC and Cy5 were used to prevent bleed through. Images were processed using Fiji ImageJ. Some data were generated with University of Manchester software; https://github.com/zindy/libatrous. Antibodies used as follows: Vimentin (diluted 1:1000, Santa Cruz, sc-7557), pan-cytokeratin (diluted 1:1000 Abcam, Ab27988), cytokeratin 5 (diluted 1:2000, Covance, PRB-160P), cytokeratin 14 (diluted 1:1000, Covance, PRB-155P), cytokeratin 8/18 (diluted 1:200, Progen, Gp11) and cytokeratin 19 (diluted 1:10, generated in house). Antibodies were assessed for specificity by western blotting. All antibodies detected bands only at the expected size.

Atomic Force Microscopy: Whole alginate gels were mounted on glass slides and hydrated, then nano-indentated with a spherically tipped cantilever (nominal radius 5µm, spring constant 1Nm⁻¹, Windsor Scientific Ltd, Slough, UK) fitted to a Bioscope Catalyst AFM (Bruker, Coventry, UK) mounted on an Eclipse T1 inverted optical microscope (Nikon, Kingston, UK). Gels were indented 25 times over a 50μm x 50μm area, with contact points evenly distributed across the area. Each gel was indented in 3 regions, and 3 gels were used per group. Force curves were analysed using Nanoscope Analysis v1.40 (Bruker). Curves were fit with a baseline correction before a force fit was applied to a Hertzian (spherical) model with a maximum force fit of 70%. Contact-based values for reduced moduli were analysed using a Mann-Whitney U-test.

Statistics and animal sampling: C3-month old virgin female 57BL/6J mice were used, sample size was determined by power analyses with an expected effect size of 33%, a common standard deviation of 15%, type I error rate of .05 and a desired power of .80. Exclusions were not applied. Tissues were pooled, cells were isolated, then split into experimental groups, effectively randomising the population. Appropriate statistical tests were devised by analysing the distribution and variance of the data.
DECLARATIONS

Ethical Approval and Consent to participate: Not applicable.

Consent for publication: The funders had no role in decision to publish, or preparation of the manuscript.

Competing interests: The authors declare no conflict of interest.

Funding: This work was supported by a Career Development Award (G0900414) and a Centenary Award from the Medical Research Council, UK to QJM, BBSRC for JW (DTP PhD studentship), and Wellcome Trust core funding for The Wellcome Centre for Cell-Matrix Research (Grant 088785/Z/09/Z).

Authors’ contributions: JW, NY and AW carried out the experiments. JW, QJM and CHS wrote the manuscript.
REFERENCES

Figure 1. Inverse mechano-sensitivity of mammary epithelial and fibroblast circadian clocks

A) Mammary epithelial cells (MECs) were isolated, and a pure epithelial population was confirmed by cytokeratin-positive and vimentin-negative staining. DAPI, blue; cytokeratin 8/18, red; vimentin, green. Scale bar = 50μm.

B) Phase contrast images of MECs cultured in 3D and 2D. Scale bar = 50μm.
C) MECs show larger amplitude of oscillation when cultured on 3D than 2D. Bioluminescence traces presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

D) Phase contrast images of MECs cultured in soft and stiff alginate gels. Scale bar = 50µm.

E) Stiffness of soft and stiff gels, revealed by atomic force microscopy. (Student’s t-test, p<0.05, Mean±SEM).

F) MECs show larger amplitude of oscillation when cultured in soft alginate gels rather than stiff gels. Bioluminescence traces presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

G) Mammary fibroblasts (MFs) were isolated by FACS. Immunofluorescent staining revealed MFs are cytokeratin-negative and vimentin-positive. DAPI, blue; cytokeratin 8/18, red; vimentin, green. Scale bar = 50µm.

H) Phase contrast images of MFs cultured in 3D and 2D. Scale bar = 50µm.

I) MFs show larger amplitude of oscillation when cultured on 2D plastic than 3D. Bioluminescence traces presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

J) Phase contrast images of MFs cultured in soft and stiff alginate gels. Scale bar = 50µm.

K) MFs show larger amplitude of oscillation when cultured in stiff alginate gels rather than soft gels. Bioluminescence traces presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

For MECs, 3 independent biological replicates were performed, each with 2 animals, which were pooled together to form 2 cultures per condition. For MFs, 3 independent biological replicates were performed, each with 3 animals, which were pooled together to form 2 cultures per condition.
Figure 2. Epithelia and fibroblasts from other tissues have inverse responses to mechanical stimuli

A) Immunofluorescence staining revealed lung epithelial cells as a population that is cytokeratin-positive and vimentin-negative. In contrast, lung fibroblasts are cytokeratin-negative and vimentin-positive. DAPI, blue; cytokeratin 19, red; vimentin, green. Scale bar =50μm.
B) Lung epithelial cells have stronger circadian rhythms in 3D culture than 2D. Phase contrast images above. Bioluminescence traces below, presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

C) Lung fibroblasts have weaker circadian rhythms in 3D culture than 2D. Phase contrast images above. Bioluminescence traces below, presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

D) Keratinocyte isolation produces a population that is cytokeratin-positive and vimentin-negative. Dermal fibroblasts are a population that is cytokeratin-negative and vimentin-positive. DAPI, blue; cytokeratin 5, red; vimentin, green. Scale bar =50μm.

E) Keratinocytes have stronger circadian rhythms in 3D culture than 2D. Phase contrast images above. Bioluminescence traces below, presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

F) Dermal fibroblasts have weaker circadian rhythms in 3D culture than 2D. Phase contrast images above. Bioluminescence traces below, presented as raw (left) and normalised (right), with fold-change graph above. (Student’s t-test, p<0.05, Mean±SEM).

For lung epithelia, 3 independent biological replicates were performed, each with 3 animals, which were pooled together to form 2 cultures per condition. For lung fibroblasts, 3 independent biological replicates were performed, each with 2 animals, which were pooled together to form 2 cultures per condition. For keratinocytes, 3 independent biological replicates were performed, each with 5 animals, which were pooled together to form 2 cultures per condition. For dermal fibroblasts, 3 independent biological replicates were performed, each with 5 animals, which were pooled together to form 2 cultures per condition.
Matrix-dependence of mammary epithelial clock genes

A

<table>
<thead>
<tr>
<th>Gene</th>
<th>Relative Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>RORα</td>
<td></td>
</tr>
<tr>
<td>RORγ</td>
<td></td>
</tr>
<tr>
<td>Bmal1</td>
<td></td>
</tr>
<tr>
<td>Per2</td>
<td></td>
</tr>
<tr>
<td>PGC1α</td>
<td></td>
</tr>
</tbody>
</table>

B

Temperature cycling paradigm

C

Circadian clocks of MECs in 3D culture

D

mRNA expression in MECs on 3D vs 2D substrata

E

mRNA expression in MECs in soft vs stiff 3D hydrogels

* indicates significant difference.
A) Expression of genes encoding clock proteins, RORα, RORγ, Bmal1, Per2 and PGC1α, is matrix-dependent, with higher levels of expression in MEC cells cultured in 3D vs 2D culture. (n=3 biological replicates, each with 3 mice, pooled to from 3 cultures per condition, with a further 3 technical replicates for each gene). Student’s t-test, p<0.05 and p<0.01 for RORα; Mean±SEM).

B) Temperature cycling paradigm consists of 48 h in a temperature-controlled incubator, which cycles between 36.5°C and 38.5°C every 12 h, followed by 24 h at 37°C. For RT-qPCR, sampling begins thereafter (named as circadian time 0, CT0), every four hours until CT44.

C) MECs cultured in 3D show robust circadian oscillation that increases as the cells are in temperature cycles for longer times prior to recording. Bioluminescence traces presented as raw (left) and normalised (right). n=3 biological replicates, each with 4 mice, pooled to form 2 cultures per condition.

D) Time-course of clock and clock-controlled genes is significantly different in 3D vs 2D cultures. There is higher circadian expression in 3D for RORα, RORγ, PGC1α, Bmal1 and Per2 than in cells on 2D substrata. Note that there is no difference in the circadian expression of genes known not to be under circadian control in MECs, such as collagen2α1. n=3 biological replicates, each with 16 mice, pooled to form 36 cultures per condition. (Student’s t-test, p<0.05, Mean±SEM).

E) Time-course of clock and clock-controlled genes is significantly different in cells in 3D soft vs stiff alginate gels. There is higher circadian expression in soft 3D for RORα, RORγ, PGC1α, Bmal1, and Per2, than in cells in the stiff gels. n=3 biological replicates, each with 16 mice, pooled to form 36 cultures per condition. (Student’s t-test, p<0.05, Mean±SEM).
Figure 4. Mechano-sensitivity of epithelial vs fibroblast gene expression

A-D) Validation of the expression changes of A) ROR α, B) RORγ, C) Bmal1, D) PGC1α. MECs and MFs were cultured in soft and stiff alginate gels. A single time-point RT-qPCR on unsynchronised cells revealed that in each case, there were higher levels of gene expression in MECs cultured in a soft ECM, and in MFs cultured in a stiff ECM. (One-Way ANOVA, p<0.05, Mean±SEM).
E-H) Treating unsynchronised MECs in 2D for 2 hours with 10 μM Blebbistatin (B), which is a Myosin-IIa inhibitor, increased the expression of clock genes, E) RORα, F) RORγ, G) Bmal1 and H) PGC1α. (Student’s t-test, p<0.05, Mean±SEM).

For both experiments, n=3 biological replicates, each with 3 mice, pooled to form 3 cultures per condition.
Mechano-sensitivity of gene expression

<table>
<thead>
<tr>
<th>GeneName</th>
<th>Description</th>
<th>P value</th>
<th>Log₂FC (3D Matrigel/2D plastic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_008904</td>
<td>Mus musculus peroxisome proliferative activated receptor, gamma, coactivator 1 alpha (PGC1α), mRNA</td>
<td>0.0000</td>
<td>2.28</td>
</tr>
<tr>
<td>NM_011281</td>
<td>Mus musculus RAR-related orphan receptor gamma (RORγ), mRNA</td>
<td>0.0000</td>
<td>1.98</td>
</tr>
<tr>
<td>NM_011066</td>
<td>Mus musculus period homolog 2 (Drosophila) (Per2), mRNA</td>
<td>0.0000</td>
<td>1.76</td>
</tr>
<tr>
<td>NM_011146</td>
<td>Mus musculus peroxisome proliferator activated receptor gamma (Pparg), mRNA</td>
<td>0.0000</td>
<td>1.74</td>
</tr>
<tr>
<td>AK041047</td>
<td>Mus musculus similar to Nuclear Receptor Subfamily 1, Group D, Member 1 homolog (Nr1d1), mRNA</td>
<td>0.0084</td>
<td>1.22</td>
</tr>
<tr>
<td>NM_007771</td>
<td>Mus musculus cryptochrome 1 (photolyase-like) (Cry1), mRNA</td>
<td>0.0000</td>
<td>0.75</td>
</tr>
<tr>
<td>NM_013646</td>
<td>Mus musculus RAR-related orphan receptor alpha (RORα), mRNA</td>
<td>0.0007</td>
<td>0.61</td>
</tr>
<tr>
<td>NM_007489</td>
<td>Mus musculus aryl hydrocarbon receptor nuclear translocator-like (Arntl), mRNA</td>
<td>0.0044</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Supplementary Figure 1. Gene expression in MEC cells cultured in different mechano-physical microenvironments

Selected clock-related genes from a set of upregulated genes in unsynchronized primary MECs cultured in Matrigel compared to plastic. Data were obtained from Agilent mouse oligo microarray, and are displayed as log2 fold change of expression and significance value.
Supplementary Figure 2. Sorting cascade for isolating mammary fibroblasts

Live, single cells were negatively sorted against a cocktail of antibodies to remove endothelial, immune and hematopoietic cells. Negative cells were then sorted against EpCAM and CD49f. CD49f- and EpCAM-low cells form the putative mammary fibroblast population.

A-B) Forward and side scatter plots with gates set to pull out single, live cells.

C) Staining with lineage cocktail reveals an unstained population of fibroblasts and epithelia.

D) Mammary fibroblasts stain negatively for CD49f and EpCAM.

E) Number of cells within a population expressed as a percentage of their parent population and total cells.
Circadian clocks in in mammary fibroblasts cultured in 2D and 3D

A

We have supplementary videos that will be inserted to the supplementary figures in the on-line version. We have included them as .avi files in the revised version for editorial consideration.

Fibroblasts cultured in 2D Fibroblasts cultured in 3D

B

Supplementary Figure 3. Stiffness-dependent circadian clocks in mammary fibroblasts

A-B) Real-time bioluminescence imaging of PER2::Luc oscillation of mammary fibroblasts cultured in either 3D or 2D condition.

A) Due to the weak bioluminescence emission in 3D, the images were reanalysed using software generated by Dr Egor Zindy at the University of Manchester (https://github.com/zindy/libatrous), and displayed using false colours (ImageJ "iman" look-up table). Please note that the coloured bands in the iman look-up table can make bright spots appear as concentric rings.

B) Stills of the images at the brightest luminescence.
Supplementary Figure 4. Mechano-response of circadian clock genes mediated by the actin cytoskeleton in mammary fibroblasts

A-D) Treating unsynchronised MFs in 2D for 2 hours with 10 µM Blebbistatin:

A) RORα
B) RORγ
C) Bmal1
D) PGC1α

(Student’s t-test, p<0.05, Mean±SEM)
Movie S1

Movie S2